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Abstract

In this paper, we describe an architecture for designing fuzzy con-

trollers through a hierarchical process of control rule acquisition and

by using special classes of neural network learning techniques. Hier-

archical development of the fuzzy control rules is a useful technique

which has been used earlier in designing a fuzzy controller with in-

teractive goals [5]. Also, we introduce a new method for learning

to refine a fuzzy logic controller. A reinforcement learning technique
is used in conjunction with a multi-layer neural network model of a

fuzzy controller. The model learns by updating its prediction of the

plant's behavior and is related to the $utton's Temporal Difference

(TD) method. The method proposed here has the advantage of using

the control knowledge of an experienced operator and fine-tuning it

through the process of learning. The approach is applied to a cart-pole
balancing system.



1 Introduction

Fuzzy logic controllers have recently experienced a huge commercial success

[12,6]. These controllers are usually developed based on the knowledge of

human expert operators[4]. However, starting with the Self Organizing Con-

trol (SOC) techniques of Mamdani and his students (e.g., [9]), the need for

research in developing fuzzy logic controllers which can learn from experience

has been realized (e.g., [8]). The learning task may include the identification

of the main control parameters (i.e., related to the system identification in

conventional and modern control theory) or development and fine-tuning of

the fuzzy memberships used in the control rules. In this paper, we concen-

trate on the latter learning task and develop a model which can learn to

adjust the fuzzy memberships of the linguistic labels.

The organization of this paper is as follows. We first discuss the general

model of our NeuroFuzzy Controller (NFC) and then we apply this model to

the control of a cart-pole balancing system. Finally, we compare this model

with other related research works such as the credit assignment in artificial

intelligence [10], Barto et. al.'s AHC model [3], and Lee and Berenji's single

layer model [8].

2 NFC: A Model for Intelligent Control

Figure 1 illustrates the general model of our intelligent controller. The two
main dements in this model are the Action-state Evaluation Network (AEN),

which acts as a critic and provides advice to the main controller, and the

Action Selection Network (ASN) which includes a fuzzy controller.

2.1 Action-state Evaluation Network (AEN)

The only information received by the AEN is the state of the plant in terms
of its state variables and whether a failure has occurred or not. Figure 2

illustrates the structure of an evaluation network including mh hidden units

and n input units from the environment (i.e., x0, zl,..., z_). The triangles

represent the calculation-center [1] of the units where the updating equations
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Figure 2: The Evaluation Network .

(to be described bellow) are applied. The input from the environment is

provided to all hidden units and output units while an interconnection weight

exists at every intersection. Therefore in this network, hidden units receive

n + 1 inputs and have n + 1 weights each while the output units receive

n + 1 + mh inputs and have n + 1 + mh weights. If A, B, C ate the matrices

of connection weights, then the output of the evaluation network is:

n fnh

v[t,,t,] = ___ b_[t,]_,[t,] + _ ei[t,]yi[ta,t,] (1)
i=1 i=1

where

and

t,] =
j=l

(2)

1
(3)

In the above equations, double time dependencies are used to avoid in-

stabilities in the updating of weights [2]. This network evaluates the action

recommended by the action network as a function of the failure signal and

4
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the change in state evaluation:

f0

,J_[t+ 1]- _[t,t]
_[t-l-1] = / r[t-I-1]-l-'yv[t,t + 1]-vii, t]

if state at time t + 1 is a start state;

if state at time t+l is a failure state;

otherwise

(4)
The weights in this network are modified according to the followings:

b,[t+ 1]= b,[t]+ _[t + 1]zi[t] (5)

c_[t+ 11= c_[t]+ _[t + 1Iv,It,t] (6)

a_j[t+ 1]= a,_[t]+ _he[t+ llv,[t,t](1--V,[t,tl)sa,_(_It])=#] (7)

where 0 < _' < 1 and/5,/_h > 0.

2.2 Action Selection Network (ASN)

The Action Selection Network (ASN) includes a fuzzy controller which con-

sists of a fuzzifier, a rule base and decision making logic, and a defuzzifier all



representedin a network. The design of the rule base for this fuzzy controller

follows the algorithm developed in [5] which is based on a hierarchical process

considering the interaction of multiple goals.

In this paper, the above fuzzy controller is modeled by a two layered

neural network where the input layer includes the fuzzifier whose task is to

match the values of the input variables against the labels used in the fuzzy

control rules. The hidden layer in this network corresponds to the rules

used in the controller and includes the decision making logic. The output

layer includes the decoding (defuzzification) process. In the following, a brief

explanation on fuzzy logic control is provided. However, for more detailed

information, see [4]. The action selector is shown in Figure 3, where the

matrices of connection weights are D, E, and F. The individual member

of these matrices axe labelled do, ei, and fi. In this network, the hidden

nodes represent a fuzzy control rule in the following manner. The inputs to

the node are the preconditions of a rule and the output of the node is its

conclusion. We assume a Multi Input Single Output (MISO) control system.

The output layer combines the conclusion of the individual rules by using

the Center Of Area (COA) method [4] which is described below. Let w(i)

represent the degree that rule i is satisfied by the input state variables in X
which means

w(i) = Min{dix#il(zt), di2#i2(z2), ..., di.#i,-,(zn)} (8)

where #ix (xt) represents the degree of membership of the input zt in a fuzzy

set representing the label used in the first precondition of the rule i and n

is the number of inputs. Then re(i), which represents the result of applying

the w(i) on the conclusion of rule i, is calculated from

w(i) = #c,(m(i)) (9)

where #c_ represents the monotonic membership function of the label used

in the conclusion of rule i. The amount of the control action (i.e., u) is then

calculated by using the Center Of Area (COA) method as the following.

Assuming discretized membership functions, COA reveals

u(t) -- E_=] fi x re(i) x w(i) (10)
 o(i) ×

where mh is the number of nodes in the hidden layer which is equivalent to
the number of rules used in the model. We define two more functions here:



l't

_,[t]- g(Z _j[t]=_[t])
j=l

n _h

pit] = g(_ _,[t]_,[t]+ _, /,[t]_,[t])
i=1 i=1

and

1, with probability p[t];q[t] = 0, with probability 1- pit]

The connection weights are updated according to the followings:

(ii)

(12)

(13)

e,[t+ 1l- e,[tl+ p÷[t+ 1](q[t]- p[t])r,i[t] (14)
flit + 1]= fi[t]+ p_[t+ I](q[t]- p[t])zi[t] (15)

d_[t+ 1]= dij[t]+ ph_[t+ 1]zi[t](1- zi[t])sgn(fi[t])(q[t]-p[t])zj[t] (16)

where p and Ph > O.

3 Applying NFC to Cart-Pole Balancing

In this section, we describe the cart-pole balancing problem and apply the

NFC model to its control.

3.1 The Cart-Pole balancing problem

In this system a pole is hinged to a motor-driven cart which moves on rail

tracks to its right or its left. The pole has only one degree of freedom (rotation

about the hinge point). The primary control tasks are to keep the pole

vertically balanced and keep the cart within the rail tracks boundaries.

Four state variables are used to describe the system status, and one vari-

able represents the force applied to the cart. These are:



z : horizontal position of the cart on the rail

: velocity of the cart

0 : angle of the pole with respect to the vertical line

t} : angular velocity of pole

= : force applied to the cart.

We assume that a failure happens when I 9 I> 12 degrees or I z I> 2.4

meters. Also, we assume that the equations of motion of the cart-pole system

are not known to the controller and only a vector describing the cart-pole

system's state at each time step is known. In other words, the cart-pole

balandng system is treated as a bIack box by the learning system.

Figure 4 presents the model of NFC as it is applied to this problem.

Among the components of this model, we only describe the Action Selection

Network here.

3.2 The Action Selection Network

The action network was modeled by defining a multi-layered neural network

which receives reinforcements from the evaluation network. This network,

as shown in Figure 4, consists of 5 input nodes representing the four state

variables and a bias unit, 13 nodes in the hidden layer, and an output node.

The nodes in the hidden layer correspond to the fuzzy control rules. For

example, node 1 corresponds to the rule:

IF 0 is Positive and 0 is Positive Then Force is Positive-Large.

As mentioned earlier, the rule base of a fuzzy controller consists of rules which

are described using linguistic variables. As shown in Figure 5(a) and Figure

5(b), three labels are used here to linguistically define the value of the state

variables: Positive (P), Zero (Z), and Negative (N). Seven labels are used

to linguistically define the value of force recommended by each control rule:

Positive Large (PL), Positive Medium (PM), Positive Small (PS), Zero (ZE),

Negative Small (NS), Negative Medium (NM), and Negative Large (NL).

The forward calculations in this network is based on fuzzy logic control as

described in [5], where nine fuzzy control rules were written for balancing

the pole vertically and four control rules were used in positioning the cart at

a specific location on the rail tracks. The presence of a connection between

8
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Figure 5: (a)- Three qualitative levels for 0, $, z, and @, (b)- Seven qualitative
ievels for F

an input node j and a node i in the hidden layer indicates that the linguistic

value of the input corresponding to node i is used as a precondition in rule

i. As shown in Figure 4, the first nine rules, corresponding to the hidden

layer nodes 1 to 9, are rules with two preconditions (i.e., 0, and $). The rules

10 through 13 include four preconditions representing the linguistic values

of 0, 0, z, and :i:. In this network, D represents the matrix of connection

weights between the input layer mad the hidden layer, and F represents a

vector of connection weights between the hidden layer and the output node.

The amount of force applied to the cart is calculated using the equations (8)

to (10) as were given in the last section.

4 Relation to other research

Credit Assignment The evaluation network in our work is similar to the

Samuel's early work on credit assignment [10]. The Adaptive Heuristic Critic

(AHC) model of Barto et. al. [3] provides s more general approach to credit

assignment which learns by updating the predictions of failures. If no failure

signal is present, the internal reinforcement provided by AHC is just the

difference between the successive predictions of failure. Recently, Sutton [11]

has formalized this method as the Temporal Difference methods.

10



Anderson's.Multi-layer networks We use the same structure as pro-

posed by Anderson [2], however, the action selection network in our model

is based on fuzzy logic control. Using the structure of a fuzzy controller,

Anderson's approach is extended here to provide for the following attributes

in NFC.

• The continuous representation of the output value.

• The inclusion of the human expert operator's control rules in terms of

hidden units in the action selection network.

It should be noted that Anderson's goal in [1] was to discover the interesting

patterns and strategy learning schemes. Not much effort was spent on making

the process learn faster. In our work, although we allow some of the strategy

learning to happen automatically, we start from a knowledge base of fuzzy

control rules and fine-tune them as learning happens in the neural network.

Single Layer NeuroFuzzy Control Lee and Berenji [8] and Lee [7] have

used a single layer neural network which requires the identification of the

trace functions for keeping track of the visited states and their evaluations.

The generation of these trace function is a difficult task in larger control

problems. However, the approach suggested in the current paper does not

use trace functions. The neural network representation of the fuzzy control

rules in NFC allows faster development and faster learning. Also, in the

single layer model, only the generation of the output values were considered.

The preconditions of the fuzzy control rules were left untouched. However,

in NFC, based on reinforcements received from the environment, both the

preconditions and the conclusions of rules can be modified (i.e., fine-tuned).

5 Conclusion

A new model based on the reinforcement learning technique and fuzzy logic

control was proposed which is applicable to control problems for which the

analytical models of the process are unknown. The NFC model presented

here improves the previous models in neurofuzzy control by learning to fine-

tune the performance of a fuzzy logic controller.

11



ACKNOWLEDGEMENT My thanks to Yung-Yaw Chen formany use-

ful discussions.Also, thanks to Charles Anderson for providing me with his

software for cart-polebalancing with multi-layerneural networks.

References

[1]

[2]

C. W. Anderson. Learning and Problem Solving with Multilayer Con-

nectionist Systems. PhD thesis, University of Massachusetts, 1986.

C. W. Anderson. Strategy Learning with Multilayer Connectionist Rep-

resentation. Technical Report TR87-509.3, GTE Laboratories Inc., May

1988.

[3] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive

elements that can solve difficultlearning controlproblems. IEEE Trans-

actions on Systems, Man, and Cybernetics, 13:834-846, 1983.

[4] R.E. Bellman and L.A. Zadeh. Fuzzy logic controllers. In L.A. Zadeh

Yager, R. R., editor, An Introduction to Fuzzy Logic Applications in

Intelligent Systems, Kluwer Academic Publishers, (to appear).

[5] H.R. Berenji, Y.Y. Chen, C.C. Lee, J.S. Jang, and S. Murugesan. A hier-

archical approach to designing approximate reasonlng-based controllers

for dynamic physical systems. In Sixth Conference on Uncertainty in

Artificial Intelligence, pages 362-369, 1990.

[6]

[7]

[8]

Y. Kasai and Y. Morimoto. Electronicallycontrolledcontinuously vari-

able transmission. In Int. Congress on Transportation Electronics, Dear-

born, Michigan, 1988.

C.C. Lee. Self-leaning rule-based controller employing approximate-

reasoning and neural-net concepts. Int. Journal of Intelligent Systems,
1990.

C.C. Lee and H.R. Berenji. An intelligentcontrollerbased on approxi-

mate reasoning and _einforcement learning. In Proc. of IEEE Int. Sym-

posium on Intelligent Control, Albany, NY, 1989.

12



[9]T. J. Procyk and E. H. Mamdani. A linguisticself-organizingprocess

controller.Automatica, 15(1):15-30, 1979.

[10] A. L. Samuel. Some Studies in Machine Learning Using the Game of
Checkers. Journal of R & D, IBM, 1959.

[II]R.S. Sutton. Learning to predictby the methods oftemporal differences.

Machine Learning, 3:9-44, 1988.

[12] S. Yasunobu and S. Miyamoto. Automatic Train operation by predictive

fuzzy control, pages 1-18. North-Holland, Amsterdam, 1985.

13



t_
IJ

i

m

0
!-.

C
0
0

N(/)
N.,_

U. 0

C

!._

0

Mm

r-

im

es

L_

00

mm

E
-I-

..C
0
C

m
C

0•-- 0

m
rr

0
crr

_- E

i

o Z
IlJmll

14



ill

15



16



m m

17



18



0

I

L_

0

@

0

C
o
-H

o
0_

¢

19

r

E

C_

E

_E

_E

Z

J

f

o_

oo
o

c__ c_J

o

%
c_
o_
z

c_
I

i

j



20



21



22



23



E_

"o

lllll

-_ o°

24



_J
C=

|m

r-
l._

.J

"0

|m

Im

(1) o3
C: -o_

:3 _E

m

"0

"0
|m

Im

"1"

L

N

LLt'_ _
r_
v

c_
u_
_3
o_
® qgH_

n"

i.mm.

N_ N
LL

25



0

0
IgIllllll

0

m

>
LU

|m

(/)
C
0

lm

0

.C

O_

E

I...

4)'-"im
.cm
,e,,, qN,,

,--(_
0
,4-0
_)*"

E _

e_e_
0 _

c 1:::o"
o o_

m _

m

26

0
e,,
0

|m

0

(0

0

0

le,,,i
0

m

(/)

0

iJ

4)
..J



27



0
II

II

,_ ,_ _

II

v
!lI

II

r_
N 7

O O
O

I

28



| |

29





N91-20813

AN OVERVIEW OF THE NEURON RING MODEL

Rod Taber

Center for Applied Optics

University of Alabama in Huntsville

Huntsville, AL 35899

ABSTRACT

The Neuron Ring model employs an avalanche structure with two

important distinctions at the neuron level. Each neuron has two

memory latches; one traps maximum neuronal activation during

pattern presentation, and the other records the time of latch

content change. The latches filter short term memory. In the

process, they preserve length 1 snapshots of activation history.

The model finds utility in pattern classification. I_s synaptic

weights are first conditioned with sample spectra. The model

then receives a test or unknown signal. The objective is to

identify the sample closest to the test signal. Class decision

follows complete presentation of the test data. The decision

maker relies exclusively on the latch contents.

This paper presents an overview of the Neuron Ring at the semi-

nar level. The appendix contains the information in slide for-

mat.
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APPENDIX

The next fifteen pages are slides describing the Neuron Ring

model.
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A Space-Time Neural Network
James A. Villarreal and Robert O. Shelton

Software Technology Branch/PT4
Information Systems Directorate

Lyndon B. Johnson Space Center
Houston, Texas 77058

ABSTRACT

Neural network algorithms have impressively demonstrated the
capability of modelling spatial information. On the other hand, the application of
parallel distributed models to processing of temporal data has been severely
restricted. This work introduces a novel technique which adds the dimension of
time to the well known backpropagation neural network algorithm. The paper
cites several reasons why the inclusion of automated spatial and temporal
associations are crucial to effective systems modelling. An overview of other
works which also model spatiotemporal dynamics is furnished. In addition, a
detailed description of the processes necessary to implement the space-time
network algorithm is provided. The reader is given several demonstrations
which illustrate the capabilities and performance of this new architecture.

INTRODUCTION

Throughout history, the meaning of time has plagued the minds of
mankind. The wise Greek philosophers, Socrates, Plato, and Aristotle pondered
deeply with what the influence of time had on human knowledge. The English
poet, Ben Johnson, wrote "O for an engine to keep back all clocks" giving voice
to our ageless lament over the brevity of human life. The great scientist,
Einstein, who developed the theory of relativity, believed that space and time
cannot be considered separately, but that they depend upon one another.

A need for space-time knowledge capture representation is clearly
evident. Human cognitive thought processes involve the use of both space and
time. A childhood event is remembered by an occurrence (or space) and its
associated place in time. We speak of an event which occurred a specific time
ago. Linguistic meanings are expressed in a manner in which proper temporal
order plays a crucial role in the conveyance of a concept. Take, for example, the
phrases "house cat" and "cat house". Speech production, too, is very order
dependent -- subtleties in intonations may change the whole meaning of a
concept. The more advanced engineering systems have characteristics which
vary over time. For instance, complex machines such as the Space Shuttle
Main Engine are abound with sensors, each varying over the life of the
machine's operation. A model which is capable of automatically associating
spatial information with its appropriate position in time becomes increasingly
significant.

Also, microscopic level investigations reveal a need to incorporate time
or sequence discovery and adaptation into the modelling framework. It is clearly
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evident that information exchange at the neuronal level occurs through a rich
interchange of complex signals. Freeman [3] and Baird [1] have done extensive
research on the olfactory bulb at anatomical, physiological, and behavioral
levels. Their findings have shown that information in biological networks takes
the form of space-time neural activity patterns. These dynamic space-time
patterns encode past experience, attempt to predict future actions, and are
unique to each biological network.

As seen in figure 1, the "classical" neuron has several dendrites which
receive information from other neurons. The soma or cell body performs a wide

range of functions; it processes information from the dendrites in a manner
which is not entirely understood and also maintains the cell's health. The
information processed by the neuron is distributed by its axon to other
interconnected neurons by the propagation of a spike or action potential. Along
each dendrite are thousands of protrusions where neurons exchange
information through a process known as synapse. The sy.naptic cleft releases
chemicals known as neurotransmitters. Even at this microscopic level, the
relevance for time adaptive neural networks becomes clearly evident. Synaptic
clefts take on roles such as neurotransmitter modulators, generators, and filters
which cloud the neuron's Inner workings and render these ever changing
dynamical properties especially difficult to study.

Connectionist architectures have impressively demonstrated several
models of capturing spatial knowledge. To accomplish this, the most popular
solution has been to distribute a temporal sequence by forcing it into a spatial

representation. This approach has worked well in some instances [11]. But
there are problems with this approach and it has ultimately prove inadequate.

A REVIEW OF NEURAL NETWORKS

A network is comprised of numerous, independent, highly interconnected
processing elements. For backpropagation networks, each element can be
characterized as having some input connections from other processing
elements and some output connections to other elements. The basic operation
of an element is to compute its activation value based upon its inputs and send
that value to its output elements. Figure 2 shows a schematic of a processing
element. Note that this element has j input connections coming from j input

processing elements. Each connection has an associated value called a
weight. The output of this processing element is a non-linear transform of its
summed, continuous-valued inputs by the sigmoid transformation in (1) and (2).
Understanding the details of this transformation is not essential here; the
interested reader will find an excellent description of such details provided by

Rummelhart et. al.[8].
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Synapse

Axon

CellBody

Dendrite

\

Figure 1 .... Schematized diagram of the classical neuron.

When groups of processing elements are arranged in sequential layers,
each layer interconnected with the subsequent layer, the result is a wave of
activations propagated from the input processing elements, which have no
incoming connections, to the output processing elements. The layers of
elements between the inputs and outputs take on intermediate values which
perform a mapping from the input representation to the output representation. It
is from these intermediate or hidden elements that the backpropagation network
draws its generalization capability. By forming transformations through such
intermediate layers, a backpropagation network can arbitrarily categorize the
features of its inputs.

Ei = _"wij Pj (1)

Pi = P (Ei ) = l
1 + e-e_ (2)

65



Villarreal and Shelton

April 12, 1990

Figure 2 .... Processing element in a backpropagation network.

THE WEIGHTS OF A BACKPROPAGATION NETWORK

The heart of the backpropagation algorithm lies in how the values of its
interconnections, or weights, are updated. Initially, the weights in the network
are set to some small random number to represent no association between
processing elements. Upon being given a set of patterns representing pairs of
input/output associations, the network enters what is called a training phase.
During training, the weights are adjusted according to the learning technique
developed by Rumelhart et. al. The training phase is modelled after a
behavioristic approach which operates through reinforcement by negative
feedback. That is, the network is given an input from some input/output pattern
for which it generates an output by propagation. Any discrepancies found when
comparing the network's output to the desired output constitute mistakes which
are then used to alter the network characteristics. According to Rumelhart's
technique, every weight in the network is adjusted to minimize the total mean
square errors between the response of the network, pp/, and the desired

outputs, tp/,to a given input pattern. First, the error signal, &i, is determined for
the output layer, N:

&i0v) = ( ti - pi(_')) P '(E_0v )) (3)

The indices p and i represent the pattern number and the index to a node
respectively. The weights are adjusted according to:

= (4)

where Awi) n)" is the error gradient of the weight from the j th processing

element in layer n to the ith unit in the subsequent layer (n + i). The parameter
a, performs a damping effect through the multi-dimensional error space by
relying on the most recent weight adjustment to determine the present
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adjustment. The overall effect of this weight adjustment is to perform a gradient
descent in the error space; however, note that true gradient descent implies

infinitesimally small increments. Since such increments would be impractical, 77
is used to accelerate the learning process. In general, then, the errors are
recursively back propagated through the higher layers according to:

J

where P'(E)is the first derivative of P(E).
(5)

OTHER SPATIOTEMPORAL NEURAL NETWORK ARCHITECTURES

Advances in capturing spatial temporal knowledge with neural network
architectures have been made by Jordan[4] and Elman[2]. Jordan approaches
this problem by partitioning the input layer in a connectionist network into
separate plan and state layers. In essence, Jordan's architecture acts as a
backpropagation network, except for the specialized processing elements in the
state layer, which receive their inputs from the output units, as well as from
recurrent connections which allow the state layer elements to "remember" the
network's most recent state. In other words, the state units behave as pseudo
inputs to the network providing a past-state history. Here, a recurrent connection
is one in which it is possible to follow a path from an element back onto itself as
shown in figure 3. Recurrent networks of this type allow the element's next state
to be not only dependent on external inputs, but also on the state of the network
at its most previous time step. For further discussion of this network's operation
refer to Jordan. In general, however, this network is trained to reproduce a
predetermined set of sequence patterns from a static input pattern. One of the
authors (Viliarreal), used this network architecture extensively in developing a
speech synthesizer. The inputs to the speech synthesis network represented a
tri-phoneme combination and the output was partitioned to represent the
various vocal tract components necessary to produce speech. I.e., the output
layer in the speech synthesis neural network consisted of the coefficients to a
time-varying digital filter, a gain element, and a pitch element which excited the
filter, and a set of down-counting elements where each count represented a 100
millisecond speech segment. To train a single tri-phone set, the network was
first reset by forcing the activation value of the elements in the state layer to
zero, then a tri-phone pattern was presented to the network's input and held
there during the learning process while the outputs changed to produce the
appropriate output characteristics for that particular tri-phone combination. The
outputs would represent the transition from one phoneme to another while a
smooth transition in pitch, gain, and vocal tract characteristics would take place.
The process was then repeated for other tri-phone combinations.
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Plan Units

State Units

Input Layer

Hidden Layer
Output Layer

Figure 3 .... The connection scheme for Jordan's network architecture
which learns to associate a static input with an output sequence.

Elman modifies Jordan's approach by constructing a separate layer,
called the Context Layer, which is equal in size to the number of units in the
hidden layer (see figure 4). However, the context units receive their input along
a one-to-one connection from the hidden units, instead of from the output units
as described by Jordan. The process works as follows. Suppose there is a
sequential pattern to be processed. Initially, the activation values in the context
units are reset to a value midway between the upper and lower bounds of a
processing element's activation value, indicating ambiguous or don't care
states. A pattern is presented to the network's input, forward propagating the
pattern toward the output. At this point, the hidden layer activation levels are
transferred one-for-one to elements in the context layer. If desired, error
backpropagation learning can now take place by adjusting the weights between
output and hidden, hidden and input, and hidden and context layers. The
recurrent connections from the hidden to context layers are not allowed to
change. At the next time step, the network's previous state is encoded by the
activation levels in the context units. Thus, the context layer provides the
network with a continuous memory.
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Layer

Hidden Layer
Output Layer

v

v

Context

Layer

Figure 4 .... With the Elman network, a history of the network's most
previous state is stored by transferring the activations in the hidden layer to the

pseudo input, context layer. Longer term memories are attainable by adding
recurrent connections to the context units.

DESCRIPTION OF THE SPACE-TIME NEURAL NETWORK

Another dimension can be added to the processing element shown in
figure 2 by replacing the synaptic weights between two processing elements
with an adaptable-adjustable filter. Instead of a single synaptic weight which
with the standard backpropagation neural network represented the association
between two individual processing elements, there are now several weights
representing not only association, but also temporal dependencies. In this case,
the synaptic weights are the coefficients to adaptable digital filters. The
biological implication of this representation can be seen when one considers
that synapses undergo a refractory period -- responding less readily to
stimulation after a response. Before proceeding with a description of the space-
time network, it is important to introduce digital filter theory and some
nomenclature.

DIGITAL FILTER THEORY REVIEW

Linear difference equations are the basis for the theory of digital filters.
The general difference equation can be expressed as:
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N M

y(n)= __, bkx(n-k)+ _._ anty(n-rn)
k=0 m=l (6)

Where the x and y sequences are the input and output of the filter and am'S and

bk'S are the coefficients of the filter. Sometimes referred to as an s-transform,
the well known continuous domain Laplace transform is an extremely powerful
tool in control system design because of its capability to model any combination
of direct current (DC) or static levels, exponential, or sinusoidal signals and to
express those functions algebraically. The s-plane is divided into a damping

component ((_) and a harmonic component 0to) and can mathematically be
expressed as

S = e "(a+j_) (7)

This formulation has several interesting characteristics which should be noted:
• The general Laplace transfer function can be thought of as a rubber

sheet on the s-plane. A desirable transfer function is molded by
strategically placing a transfer function's roots of the numerator and the
denominator in their appropriate positions. In this case, polynomial roots
of the numerator are referred to as zeros and "pin" the rubber sheet to the
s-plane's ground. On the other hand, polynomial roots of the
denominator are referred to as poles and their locations push the rubber
sheet upwards -- much like the poles which hold up the tarpaulin in a
circus tent. Therefore, zeros null out certain undesirable frequencies and
poles can either generate harmonic frequencies (if close enough to the
jo_ axis) or allow certain frequencies to pass through the filter.

• Setting the damping coefficient, (_, to zero is effectively similar to taking a
cross sectional cut along the j(z axis. This is the well known Fourier
transform.

° A pole on the jtoaxis, signifying no damping, will produce a pure
sinusoidal signal. However, a pole which travels onto the left half plane
of the s-plane exponentially increases, eventually sending the system
into an unstable state.

The discretized form of the Laplace transform has been developed
further and is referred to as the z-transform. The notation z -1 is used to denote a
delay equal to one sampling period, in the s-domain, a delay of T seconds
corresponds to e-sT Therefore, the two variables s and z are related by:

z-1 =e.sr (8)

where T is the sampling period. The mapping between the variables can be
further illustrated by referring to figure 5. First notice that the left half plane of the
s-plane maps to the area inside a unit circle on the z-plane. In abiding with the
Nyquist criterion, sampling at least twice the signal bandwidth, fs, note that as

one traverses from -fs/2 to +fs/2 on the s-plane is equivalent to going from x
radians toward 0 radians and back to _ radians in a counterclockwise direction
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on the z-plane. Furthermore, note that lines in the s-plane map to spirals in the
z-plane.

k
2 j

:!i ziiii!i!iiiiiiii!il

2
plane'3 - z - p_ane

Figure 5 .... Pictorial relationship between the continuous domain s-plane
and discrete domain z-plane.

By evaluating the z-transform on both sides of the linear difference
equation, we can show that

Y(z) _
F(z)=

x (z)

N

__, bkz k
k=O

M

- __, amZ "m1

m=l (9)

Digital filters are classified into recursive and nonrecursive types. The
nonrecursive type have no feedback or recurrent paths and as such all the a m
terms are zero. Furthermore, digital filters are also classified in terms of their
impulse responses. Because nonrecursive filters produce a finite number of
responses from a single impulse, such filters are referred to as Finite Impulse
Response (FIR) filters. On the other hand, the recursive filters produce an infinite
number of responses from an impulse and are therefore referred to as Infinite
Impulse Response (IIR) filters. For example, if a unit impulse is clocked through
the filter shown in figure 6(a), the sequence

bo,bl,b2......bM, O,O, O,O,0.....O, O,0

will be output. Notice that the filter produces only the coefficients to the filter
followed by zeroes. However, if a unit impulse is presented to the filter shown in
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figure 6(b), because of the recursive structure, the response is infinite in
duration.

FIR and IIR filters each possess unique characteristics which may make
one more desirable over another depending on the application. To summarize,
the most notable of these characteristics include:

• FIR filters, because of their finite duration are not realizable in the analog
domain. IIR filters, on the other hand, have directly corresponding
components in the analog world such as resistors, capacitors, and
inductive circuits.

• IIR filters cannot be designed to have exact linear phase, whereas FIR
filters have this property.

• Because of their recursive elements, ilR filters are orders of magnitude
more efficient in realizing sharp cutoff filters than FIR filters.

• Because of their nonrecursiveness, FIR filters are guaranteed stable. This
property makes FIR filters much easier to design than FIR filters.

These different properties between FIR and IIR filters must be carefully weighed
in selecting the appropriate filter for a particular application.
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Figure 6 .... (a) Digital network for FIR system; (b) Digital network for IIR
system

DESCRIPTION OF THE SPACE-TIME NEURAL NETWORK - CONTINUED

Having introduced digital filter theory, it is now possible to continue with
the description of the space-time neural network. What follows is a detailed
procedure for constructing and training the space-time neural network. As
mentioned earlier, the space-time neural network replaces the weights in the
standard backpropagation algorithm with adaptable digital filters. The
procedure involves the presentation of a temporal ordered set of pairs of input
and output vectors. A network consisting of at least two layers of adaptable
digital filters buffered by summing junctions which accumulate the contributions
from the subsequent layer is required. A pictorial representation of the space-
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time processing element is illustrated in figure 7. In this case, a value, say xj(n),
is clocked in to its associated filter, say Hji(n), producing a response yj(n)
according to the filter representation

M N

yj(n) = _ amjyj(n- m) + _ bkjxj(n - k)
m=l k=O (10)

All remaining inputs are also clocked in and accumulated by the summing
junction i:

Si(n) = _ yj(n)
_nj (1 1)

The contributions from the signals fanning in to the summing junction are then
non-linearly transformed by the sigmoid transfer function

pi(Si(n)) = l
1 + e-S_(n) ( 1 2)

This output is then made available to all filter elements connected downstream.

a,,,,m,,hill,x,<n)
Ill IIl 

I I"_ li _ yl(n) Si(n) .ipi(Si_))_

IlilliIIIh,dl,,,_n)_ ._ _ ,J_ .d, ,_ ,,.

,,, ii ,,,iilhilll,,/"

Figure 7 .... A pictorial representation of the Space-Time processing
element.

It was earlier discussed that the space-time network is comprised of at
least two layers of filter elements fully interconnected and buffered by sigmoid
transfer nodes at the intermediate and output. A sigmoid transfer function is not
used at the input. Forward propagation involves presenting a separate
sequence dependent vector to each input, propagating those signals
throughout the intermediate layers as was described earlier until reaching the
output processing elements. In adjusting the weighting structure to minimize the
error for static networks, such as the standard backpropagation, the solution is

straightforward. However, adjusting the weighting structure in a recurrent
network is more complex because not only must present contributions be
accounted for but contributions from past history must also be considered.
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Therefore, the problem is that of specifying the appropriate error signal at each
time and thereby the appropriate weight adjustment of each coefficient

governing past histories to influence the present set of responses.

Figure 8 .... A representation of a fully connected network utilizing Space-
Time processing elements. This depicts a set of input waveform sequences

mapped into an entirely different output waveform sequence.

The procedure for adjusting the weighting structure for the space time
network follows. First compute the errors at the output layer for each processing

element, i,

8i = (Di(k) - Ai(k)) P'(Ei(k)) (13)

where:

Di(k)

Ai(k)

P'(Ei(k))

is the kth desired response from a given sequence
for neuron i at the output layer

is the network's output response at neuron i for the

kth input sequence pattern

is the first derivative of the sigmoid function for the

ith output's activation value or ?(Ei(k))( 1 - P(Ei(k))

Now to compute the updates for the coefficients each filter element between the
hidden and output layer neurons, a reversal procedure is implemented.
Whereas in the forward propagation, input values were clocked into the filter
elements, here, backpropagation instead involves the injection of errors into the
filter elements according to:

zSbijk(n + 1) = o_[rlz_bijk(n) + (1 - rl)SiXqd (14)
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where:

•4biyk(n + 1)

Ot

abist4n)

17

8i
Xqk

is the update for a zero coefficient, bk, lying
between processing elements/and j
is the learning rate

is the most recent update for the kth zero element
between processing elements i and j

damps most recent updates

is described by (13)

contain a history of the activation values for the
non-recursive filter elements between neurons i

and j, k time steps ago

The recursive components in each filter element are treated the same way and
are updated according to:

where:

zl&s_n + 1) = o_[rlAaijk(n) + (1- rl)_iY(id (15)

aau 'n + 1)

a
aai  4n)

*7

8i
Y i.ik

is the update for a zero coefficient, bk, lying
between processing elements/and j
is the learning rate

is the most recent update for the kth zero element
between processing elements/and j

damps most recent updates

is described by (13)

contain a history of the activation values for the
non-recursive filter elements between neurons i

and j, k time steps ago

For implementation purposes, the present algorithm only considers the
accumulation of errors which span the length of the number of zeroes, nZho,
between the hidden and output neurons.

where:

rl Zho

8i,= p 6j,xs,,
k=O J (16)

i

J
8hi

is the index of the hidden neuron

ranges over the neuron indices for the output layer

is the accumulated error for the ith neuron in the

hidden layer
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P '(Aik) is the first derivative of the sigmoid function for the
kth history of activation levels for the ith neuron in
the hidden layer

sums the results of injecting the previously
computed errors found in equation (13) through

the FIR portion of the filter element, XJik, found
between the ith neuron in the hidden layer and the
jth neuron in the output layer.

Simulations

The first simulation is a variation of the classic XOR problem. The XOR is
of interest because it cannot be computed by a simple two-layer network.
Ordinarily, the XOR problem is presented as a two bit input combination of (00,
01, 10, 11) producing the output (0, 1, 1,0).

This problem can be converted into the temporal domain in the following
way. The first bit in a sequence XOR'd with the second bit will produce the
second bit in an output sequence, the second bit XOR'd with the third will

produce the third in an output sequence, and so on.

Input 1 0 1 0 1 0 0 0 0 1 1 ...................
Output 0 1 1 1 1 1 0 0 0 1 0 ...................

In the simulation, the training data consisted of 100 randomly generated
inputs and the outputs constructed in the manner described above. A network
was constructed which had 1 input, 6 hidden elements, 1 output unit, 5 zero
coefficients and 0 pole coefficients in the input to hidden layer, and 5 zero
coefficients and 0 pole coefficients in the hidden to output layer. The task of the
network was to determine the appropriate output based on the input stream.
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Figure 9 .... Error curve for the temporal XOR problem trained on a 1 input, 5
hidden, 1 output, 5 zeros and 0 poles in input to hidden layer, and 5 zeros and 0

poles in the hidden to output layer.

For the second simulation, a network with 2 input units, 8 hidden units, 8
output units, 5 zeros - 0 poles between input to hidden, and 5 zeros - 0 poles
between hidden to output was constructed. One of the authors (Shelton)
constructed a problem, called the Time Dependent Associative Memory Test,
which would test the network's ability to remember the number of events since
the last trigger pattern was presented. The data consisted of 1000 input output
pairs where the input bits were randomly constructed and the output
appropriately constructed. As an example, consider the first 7 sets of data in the
list. Note that a "1" bit sequentially gets added to the output for the input patterns
0 0, 1 0, 1 0, 0 0, 1 0, and 0 1 until the 1 1 pattern is presented which resets the
output back to the 1 0 0 0 0 0 0 0 state.

78



Villarreal and Shelton

April 12, 1990

Input

00
10
10
00
10
01
11
10
10
11
10
01
11

Output

11000000
11100000
11110000
11111000
11111100
11111110
1O00O000
11000000
11100000
10O00000
11000000
11100000
100O0000

0.4

0.3

I,U
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:E
rr

0.2
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0.0
0 1000 2000 3000 4000 5000

Number Passes

Figure 10 .... Error curve for a 2 input, 8 hidden, 8 output, 5 zero - 0 pole
between input to hidden, and 5 zero - 0 pole between hidden to output network

operating on the
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ABSTRACT

Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability
of handling imprecise measurements from sensors. Several applications are underway at the
Software Technology Laboratory, NASA/Johnson Space Center to investigate fuzzy logic

approaches and develop guidance and control algorithms for autonomous orbital op.erations.
Translational as well as rotational control of a spacecraft have been demonstrated using space
shuttle simulations. An approach to a camera tracking system has been developed to support

proximity operations and traffic management around the Space Station Freedom. Pattern
recognition and object identification algorithms currently under development will become part of
this camera system at an appropriate level in the future. A concept to control environment and life

support systems for large Lunar based crew quarters is also under development. Investigations in
the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic

controller are planned as a joint project with Ames Research Center.

1.0 INTRODUCTION

The current activities of the Software Technology Branch of the Information Technology Division
at the NASA Lyndon B. Johnson Space Center are directed towards the development of fuzzy
logic [1,2] software capabilities for building expert systems. In particular, the _mphasis has been
on developing intelligent control systems for space vehicles and robotics. The problem of sensor
data monitoring and control of data processing, which includes detection of potential failures in the
system and in some cases reconfiguration, is also under investigation. Results of performance tests
made on simulated operational scenarios have been very promising. The issues of when, why,
and how hardware implementation can be beneficial are also being studied carefully.

There are certain key technology utilization questions to be answered relative to the use of fuzzy

logic control over conventional control.

1) Is it possible to create control systems which do not require a high degree of redesign
when system configurations change or operating environments differ?

In other words, can adaptivity be achieved through the use of a fuzzy logic based controller in

place of a conventional controller ? Experience with the conventional controller development tells
us that a typical conventional controller requires significant redesign when there are changes in a)

system characteristics, b) system configuration, or c) the environment in which the system is

operating.

2) Can a fuzzy controller be used as a high level controller to function in conjunction with
classical controllers in a way the human would ?

81

C

0,
O
o



Specifically, can it be designed to monitor the system, evaluate its performance, and either suggest
or force changes to make the system work properly or at least function more efficiently ? A high
level controller typically works with abstract parameters which are derived, but not directly
measured. It also commands parameters which are not direct controls. There are additional steps
between the controller and sensing as well as commanding sides. Such controllers are grouped as
intelligent controllers [3] and are not included in the conventional PID controllers group because
these controllers perform additional tasks that provide capabilities for self governing or regulation
as well as fault tolerance.

3) How easy or difficult is it to design and implement a fuzzy rule base that will control a
complex system as opposed to developing a classical control system to do the same problem ?

Fuzzy logic based controllers will be valuable in systems that are highly non-linear and having
complex environments that are practically impossible to model. Fuzzy controllers work for a linear

system also but probably have less justification in this case, unless the problem is best thought of
m a rule-based framework. The Japanese researchers and engineers have demonstrated [4,5,6] the
usefulness of fuzzy controllers in the last few years with some impressive applications from a
engineering viewpoint, such as the Sendai train controller [7], the air conditioning control system,
the camera autofocusing system [8], the gas cooling plant controller [9], the television auto contrast
and brightness control, the applications to automobile transmission and braking control, and
applications to control of jitter in camera imaging which requires the distinguishing between real
motion in the image which is desired and motion of the camera which needs to be filtered out.

4) A particular question of interest to NASA is : where can hardware implementations be
utilized advantageously and how easy or difficult is it to transfer fuzzy rule bases to hardware?

In many cases, hardware will be able to take much of the computational burden off the central
computing system. Fuzzy processors that perform fuzzy operations and execute fuzzy rulebases
have emerged in the computer market [10,11,12,13] and are expected to gain widespread support
for inline control of devices. Analog [14,15] as well as digital fuzzy processors are available and
can be tailored to specific applications for optimum performance. Space operations can benefit
greatly if the speed and power of these fuzzy processors can be utilized to achieve autonomy.

In section 2, a typical mission scenario for autonomous orbital operations is described with
activities and tasks involved in carrying out some important steps. The role of fuzzy logic in these
operations is discussed in section 3. A short summary of applications of fuzzy logic achieved thus
far accomplished in the Software Technology Laboratory is provided in section 4. Current
activities that utilize fuzzy logic in orbital operations, future activities, and a summary of our
approach are provided in sections 5, 6 and 7 respectively.

2.0 AUTONOMOUS ORBITAL OPERATIONS

A typical rendezvous mission scenario as shown in fig. 1 for satellite servicing [16] requires orbit
transfers, rendezvous planning, phasing maneuvers, and guidance and targeting for proximity
operations. These tasks are necessarily required to approach and capture a satellite for repair or
maintenance or to return it to a space station or the Earth. Repair and maintenance of satellites also
requires control of robotic manipulator arms if such repairs are to be performed at the satellite
location as opposed to returning it to a permanently manned orbital facility or the Earth. Sometimes
a satellite may require only an inspection to determine if there are any problems. In this case, only
station keeping or fly-around maneuverers are necessary.

In the problem of rendezvous of two space vehicles it is typically assumed that the target vehicle
can maintain a stable orbit during the time required for the rendezvous to take place. Ideally, it will
also have a stable attitude (although for vehicles in distress this may not be possible). For severely
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distressed vehicles, the actual orbit may also be affected. In either case, the problem of rendezvous
and capture may be necessary.

The target vehicle will be assumed to be at the origin of a coordinate system, known as the local
vertical local horizontal (LVLH), where positive z is directed from the target to the center of the
earth (or, in general to the center of whatever body it is orbiting), positive y is along the negative of
the angular momentum vector and positive x completes the right handed coordinate system, as
shown in fig. 2. The chasing vehicle will be the only vehicle assumed to be able to intentionally
modify its trajectory and attitude in this relative coordinate system. The performance of the tasks
above require trajectory control of the active vehicle relative to the target vehicle, including not only
relative positions of the two vehicles, but also the attitude of the active vehicle.

Among the rendezvous mission tasks, mission planning based on mission goals and constraints is
at the highest level. For example, a scenario for the capture of a satellite will incorporate time
requirements, fuel constraints, and lighting and communications requirements based on the best
assessment of the current and projected situation. The system will have to be intelligent enough to
continually evaluate the status of the rendezvous and learn to adapt to unexpected occurrences
through contingency planning or real time tuning of control algorithms. Such a system will require
many inputs from a variety of independent sources, i.e. ranging and visual sensors, navigation
systems, object recognition systems, human inputs from ground based or space based stations, on-
board planning systems, diagnostic systems that report on the health of various systems including
individual sensors, and redundancy management systems. Some specific problems are tracking of
moving objects with sensors such as cameras, radar, lasers, or star trackers. In the event of
multiple objects in the vicinity of the desired target vehicle, it must be possible to recognize the
proper one, and for final approach to the vehicle it will be necessary to recognize objects on the
target vehicle such as docking ports or grapple f'LxtUreS.

The next important task is trajectory control, especially the control of relative position with respect
to the target vehicle. This must be performed during the entire time of the rendezvous. In some
segments, control has to be very precise, while in other segments, the accuracy requirements are a
bit relaxed. Trajectory control requires a continuous knowledge of current state,which is typically
derived from several sensor measurements. It also requires the information regarding a desired
state typically provided by the guidance systems. It should be noted that the information required
for the trajectory control is continuously changing with time and is highly dependent on the
accuracy of sensor measurements.

Similarly, attitude control is required throughout the mission. A robust attitude control system
enhances trajectory control because the execution of desired delta-V is much more accurate. Poor
attitude control can definitely result in a mission failure. It should be noted that rotational control
has to be very precise during the final approach and docking segments because coupling between
rotational changes and the relative distances is significantly high. Again, note that the knowledge
regarding current as well as the desired attitude is required and this information changes with time.

Both of the above tasks require processing of sensor data and its synthesis. All measurements must
be accurately interpreted and action must be taken accordingly. Since several sensors are used,
proper data fusion must be performed and each measurement must be used in its proper context.
Otherwise, the probability of mission failure increases very significantly. This data fusion task
necessarily includes the monitoring task that must be continuously performed and any deviations
from the planned trajectory must be reported immediately.

Once the chaser spacecraft gets close to the target, its approach to the docking port must be
carefully maintained with tight control of its translational as well as rotational state. The controller
must be very precise and must have a fine tuning capability. At the end of the approach task it must
initiate docking and rigidizing procedures, which will use a completely different set of sensors.
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There must be some provision for a recovery procedure in case of a docking failure. When the
crew performs these functions, they interpret the measurements according to their training and take
action according to the procedures developed in a simulator. These procedures typically include
contingency steps in case a docking failure occurs. The autonomous vehicle must have the same
capability for mission success.

The vehicle must prepare for return to base with or without the payload. These preparations could
be very lengthy or very short depending on what procedure the crew decides to use and how their
sequence of actions is organized. In any event, thinking like the crew will definitely help solve the
problem of increasing autonomy in rendezvous operations.

3.0 ROLE OF FUZZY LOGIC IN AUTONOMY

•Fuzzy logic will be useful in the proper interpretation of measurements from sensors that are
always corrupted by noise and bias. The accuracy of sensors represent a challenge that is not
always surmountable. A fuzzy logic framework [ 1,2] can easily handle imprecise measurements,
thus helping the integration process. Also systems may perform incorrectly or at least unexpectedly
anomalous for a short time. It is necessary to determine this type of behavior and correctly resolve
the situation. Processing of uncertain information using common sense rules and natural language
statements is possible in this fuzzy logic framework.

The utilization of sensor data in engineering control systems involves several tasks that historically
are done by a man in the decision loop. These include cursory monitoring of data to determine if it
should be processed and/or monitoring the output of the system to determine whether the system is
performing as expected. All such tasks must be performed based on evaluations of the data
according to a set of rules that the human expert has learned, usually from experience. Often, if not
most of the time, these rules are not crisp, i.e., there must be some common sense or judgmental
_on e decisions made. Such problems can be addressed by a fuzzy set modelling approach and if

e properly can make decisions as well as the expert.

The fuzzy logic approach is simple to understand and easy to implement as a software module.
Fuzzy rules provide a framework to implement the human thinking process i.e. the rules reflect the
human thought process, such as "If the object is Far Left then rotate the camera to the left side "
The entire rule base for the controller can be derived in the form of natural language statements as if

a human was performing the controlling task. The experiential knowledge of a human controller,
the crew in case of space vehicles, can be easily embedded in the software.

Fuzzy logic based controllers can be implemented in several ways as shown in fig. 3. In a strict
sense these can be implemented as single controllers with well defined input and output
parameters. They can also be implemented as feed forward controllers in conjunction with
conventional controllers such that the desired state-value can be altered to provide an appropriate
correction. The final command for the process is generated by the conventional controller. An
alternative is to implement the fuzzy controller as a tuning system [17] in such a way that the
parameters of a PID controller are tuned to better control the process and achieve efficiency. Thus,
fuzzy logic controllers offer flexibility and adaptability for the process environment.

Implementation of fuzzy membership functions, rules and related processing is made easy by tools
like the TIL Shell [18,19] which has a graphics oriented user interface and fuzzy-C compilers [20]
that can generate code for a fuzzy chip or the C code to integrate with other software modules.
There are several commercial products available in the industry that allow easy implementation of
knowledge base, rulebase and user interfaces. For autonomous operations, it is easier and useful
to implement control decisions through knowledge bases and rules so that the heuristics and related
experiential knowledge can be used for a particular situation.
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It is also possible to develop and implement a fuzzy controller in a fuzzy processor, thus, having a
fuzzy hardware controller. There are several commercial fuzzy processors [10,11,12,13,14,15]
that can process over 30,000 fuzzy rules per second and thus provide a high processing power.
These fuzzy processors consume low power with a capability to process general purpose
instructions and can be mounted in the back plane of a sensor, for example, a camera. These
processors also provide interfaces to hardware as well as the main computer to transfer information
and commands. The advanced sensor systems envisioned for space station operations will have
such processors embedded as an integral part of the system. Thus, a distributed processing
onboard the spacecraft is possible via fuzzy chips.

A camera tracking system [21] described in section 4.4 can be a dedicated sensor with built-in
intelligence and speed to perform functions which will normally be performed by the onboard
computers. Because of the de_dicated nature of a fuzzy chip and its processing power, there is
virtually no computational load to the Space Station Freedom (SSF) computers. As a result, the
computers will be available for other computing requirements such as complex guidance and
navigation schemes. Furthermore, the interfaces between the fuzzy chip and computers will be at a
command level requiting reasonably low speed data transfer. There will be no need for a high rate
data transfer which could possibly increase costs and decrease reliability.

A significant application of fuzzy logic is in an advisory role in health monitoring and internal
reconfiguration of spacecraft subsystems. These processes require a capability to handle uncertain
measurements, estimate possibilities of failures and quickly rearrange flow so that autonomous
operations are not stopped. Techniques have been developed to update the rule base using
reinforcement learning in a given environment and adjust the response or behavior of a controller.
These are very important for achieving operational efficiency in space operations.

4.0 PAST ACCOMPLISHMENTS AT JSC

There have been several applications of fuzzy logic to orbital operations at JSC. Sensor data

processing control for star tracker navigation evolved during 1985-86 [22,23,24,25,26] and was
successfully utilized to analyze space shuttle rendezvous flight data and check the validity of the
algorithms. Translational control of a spacecraft based on fuzzy rules [27,28] was developed
during 1987-88 and demonstrated [29] during the International Fuzzy Systems Association (IFSA)
video teleconference IFSA88 at Iizuka, Japan in 1988. Rotational control of spacecraft attitude has
been developed [30] using the phase plane approach and was demonstrated at IFSA89 conference
[31] in Seattle, Wa. in 1989. A fuzzy logic based concept for a camera tracking system has been
developed and was reported at the 8th International Congress of Cybernetics and Systems in June
1990 [21]. These applications are described in a short summary in this section.

4.1 Sensor Data Processing

In space shuttle rendezvous operations, the star tracker is used to give angle measurements for
tracking rendezvous targets when the sun-target-shuttle geometry is such that the target is reflecting
light towards the shuttle star tracker and when radar data is not available. When attemptin.g to track
a target with the star tracker, a star or debris such as ice crystals (caused by shuttle venting or jet
firings) may be acquired. Loss of lock on the true target and acquisition of a false target is
possible, especially if the target is dim due to attitude or range, or if the target was tumbling. If a
bright false object crosses the target Line Of Sight (LOS) the star tracker might follow the brighter
object. From experience, using simulated data, we know the shuttle rendezvous filter processes
data under these conditions for a long enough time that the state vector is destroyed.

Under current operational conditions, to guard against any of these problems, a crewman monitors
the acquired signal for acceptability prior to allowing the data to be processed, and he monitors the
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residuals during data processing to insure that no unusual problems occur. To determine
acceptability for processing, the shuttle crewman follows the rule [25].

If the residual is less than the expected error as determined in pre-mission studies,
and the change in residuals is less than 0.05 degrees for five consecutive
measurements, then allow the filter to process data.

This rule contains deterministic conditions that are actually fuzzy in nature and have been
interpreted as fuzzy by the crew at times during actual operations.The general problem considered
here is to model the crewman's reasoning and common sense thought process in deciding whether
the sensor data is acceptable for use in updating the shuttle-target relative state vector. This
involves pre-editing and screening the data, and weighting the relative state vector update.

The Kalman filter editor, as it is designed for the shuttle rendezvous navigation system compares
the residual magnitude against a multiple of the expected variance in the residual as derived from
the current covariance matrix and the expected sensor error model. Data for which the residual is
less than or equal to the expected error is incorporated into the filter state, and data for which the
residual exceeds the expected error is not processed by the filter but is displayed to the crew for use
in decision processes.

The filter and editor have performed satisfactorily on all rendezvous flights thus far. However, it
has been considered essential that the crew be involved in the operations or else erroneous data
such as obtained from lock on to stars and debris can be processed by the filter thus corrupting the
filter state and necessitating a filter restart. With the current editor design it is not possible to protect
against this since a star or debris may be very close to the target LOS.

The crew pre-editing function is to ensure that the true target is acquired prior to data processing. If
the object acquired is the true target the residual should be less than the expected error, but more
importantly it should stay almost constant. The only variation should be from noise in the sensor
and small errors due to propagation of the shuttle and target states. Residual change less than 0.05
degrees is a conservative requirement consistent with the noise and bias in the star tracker.

Star tracker data is useful in maintaining a good relative state vector, but since it gives no range
information directly, the state vector is easily corrupted by erroneous data. To guard against
processing erroneous data two things were done. First, the pre-editing rule was restated using
fuzzy sets which seemed more appropriate than a crisp statement in terms of ordinary Boolean
logic. The fuzzy variation of the rule [25] reads as follows.

If the measurement residual is small with respect to that expected value as
determined from pre-mission studies and the residual change is small with respect
to expected propagation errors and noise in the sensor for several consecutive
measurements then allow the Kalman filter to process data.

Secondly, in order that the measurements be processed in a way consistent with common sense
reasoning the decision function for processing data was modeled as a fuzzy set to be used for
weighting updates to the state vector. By doing this it is assured that measurements that are close
together will be processed similarly. For example, a measurement that slightly passes the residual
edit criterion and one that barely fails will be processed similarly, i.e. the one that slightly passes
will be allowed to only slightly contribute to the state vector update.

The fuzzy editing criterion was implemented into a simulation version of the shuttle on-board
software. Real mission data was processed through this simulation and inputs to the filter were
controlled by the fuzzy decision making process defined by the rule rather than the crew and the
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current filter editor. The data from this simulation was compared to the results that were obtained
during actual missions under ideal conditions as determined by the crew.

For non-nominal flight data collected from the Solar Maximum Mission (SMM) where an Inertial
Measurement Unit (IMU) problem caused apparent errors in the star tracker measurements that
exceeded the expected error by a factor of about fifty [26], the performance of the fuzzy editing
scheme did not differ significantly from the current on-board system with the crew performing
their normal pre-editing and monitoring functions. The problem, although actually caused by the
redundancy management function, had the net result of an extremely large random bias. This data
also had measurements from lock on to stars at the beginning of each star tracker interval. Instead
of simulating a break track that would normally be done, it was decided to process the star data in
order to test the weighting functions ability to handle problem measurements. As the following
data, tabulated in table I, indicates the erroneous data caused no problems [25].

TABLE I. FLIGHT 41 -C IMU SWITCHING ERRORS

(AS COMPARED TO THE ONBOARD SOLUTION)
AFYER PROCESSING 20 MINUTES OF STAR TRACKER DATA

RANGE

Nominal Filter (No Star Protection) - 13600

Fuzzy Editor (Editing when p ^ r = 0) 300

Fuzzy Editor (F_xliting when p ^ r < 0.25) 1320

Fuzzy Editor (F_Airing when p ^ r < 0.5) 1I50

RANGE RATE

-0.5

0.31

-0.15

-0.II

The state vector obtained using the fuzzy logic process and the state vector obtained from the actual
flight data were then propagated for approximately one hour until radar data was obtained and the
two results compared to the radar data to evaluate the filter's performance with the fuzzy editing
and weighting rule against the system performance with man in the loop. For this test the p ^ r edit
level was set to 0.0. The range and range rate estimates from the onboard navigation system and
the system with fuzzy editing and weighting are then compared to the range and range rate
measurements from the radar. The deviations from the radar measurements for the two systems are
approximately the same. For a radar range of 102695 feet, the range deviations for fuzzy and
onboard filters are 1965 and 1835 feet respectively [25]. This fuzzy editing and process control
application has thus given very satisfactory results, comparable to that achieved by the crew in the
operational system.

4.2 Translational Control of a Spacecraft

Fuzzy sets have been used in developing a trajectory controller for spacecraft applications in
proximity operations profiles [27,28]. An automated vehicle controller that interprets the sensor
measurements in a manner similar to a human expert has been modeled using fuzzy sets. The
control rules were derived from the thinking process used by pilots and were implemented using
typical r_- and s-functions (fig. 4) that can be adjusted for varying degree of fuzziness.
Membership function definitions including universe of discourse were based on the targeting
equations and control strategy for LOS approach [32]. The control strategy heavily used the
experience base for manual operations.
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Typical rules used for rendezvous vehicle control and modeled with fuzzy sets are the following :

If the rendezvous vehicle's orientation with respect to a desired pointing vector to
the target vehicle is close to the required orientation then no action is necessary.

If the orientation significantly deviates from the required, then, take appropriate
action to correct the problem.

Both in plane and out of plane positions and rates, and range and range rate must be controlled.
Fuzzy sets are defined for "somewhat greater than", "somewhat less than" and "approximately
equal to" the desired closing rate. They are also defined for "high", "low" and "near" with respect
to the desired position (see fig. 4). During some time interval (every two seconds for the Shuttle)
the fuzzy sets are evaluated and a determination is made as to whether an action needs to be taken
to restore a rate or position to its desired value. If the no change function, such as "approximately
equal to" or "near" the desired value, is larger than the corresponding change function, such as
"somewhat greater than" or "low" with respect to the desired, then no action is taken. Otherwise an
appropriate action is taken to restore the rate or position to the desired. The appropriate action is
determined from an estimated action A(u), where u is the current value of the state, required to
restore the active vehicle to the desired position from some maximum deviation. This action A(u) is
then weighted by the change function S(u), and an action S(u)*A(u) is commanded to the system
under control. Furthermore, there are no extreme accuracy requirements for the function A(u). For

example, referring to fig. 4, if u 1 is the current value of x, then, X(Ul)>S(u 1) and no action is

taken. On the other hand, if u 2 is the current value of x, then S(u2)>x(u 2) and an action

S(u2)*A(u2) is commanded. More than one action can be commanded at a time so long as a

constraint of the system under control is not violated.

The fuzzy controller has been implemented into a multi-vehicle dy.namical simulator known as the
Orbital Operations Simulator (OOS) [33], complete with all enwronment and sensor models. A
small part of this control simulation was demonstrated via tele-video links [29], to the IFSA88
Workshop that was held in Iizuka, Fukuoka, Japan in August 1988. In thi'g simulation, the
automated fuzzy controller was used to control the closing rates and relative positions of the shuttle
with respect to the SMM satellite. According to the test scenario, the fuzzy controller was required
to perform operations including approach to target, fly around and stationkeeping.

Many different scenarios have been run with this automated fuzzy controller to evaluate the
performance with respect to flight profiles and delta-V requirements, which is a direct measure of
the performance. Comparisons of delta-V requirements for a man-in-the-loop versus the automated
controller have shown [27] that the automated controller always uses less delta-V. For a test case

involving stationkeeping at 150 feet for 30 minutes, the automated controller required 0.1 ft/sec
delta-V whereas 0.54 ft/sec was used in the man-in-the-loop simulation. For v-bar approach from
500 feet to 40 feet within a 25 minute time interval, the automated controller used 2.12 ft/sec vs.

2.99 ft/sec for the man-in-the-loop simulation.

4.3 Rotational Control of Spacecraft

To complement this translational control, it was decided to implement rotational control via fuzzy
membership functions and the rules based on the conventional phase plane. It was obvious that
such an implementation would provide a direct performance comparison with the conventional
control system, thus leading to further insight into understanding the relative merits of fuzzy
control systems. Furthermore, an integrated six Degree Of Freedom (DOF) controller can be
developed by combining these two control systems.
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The rotational control system has been developed on a 386 computer using the fuzzy-C compiler
and related software. The 'Phase_Plane' package that contains the membership functions and rules
has been implemented in a file called Phase.ill [30]. The angle and rate errors, PHI and PHI_DOT,
are inputs and the torque is the output for this rotational controller. The input variables have seven
membership functions defined over the universe of discourse as shown in fig. 5. The output
variable torque has five membership functions as shown in fig. 6. There are 25 rules defined for
reducing the PHI and PHI_DOT errors to within their zero (ZO) range (see Table II). These rules
are based on the phase plane construct used in the attitude control system.

Table II. Rule base for attitude controller

phi_dot

NB

NM

NS

ZO

PS

PM

PB

phi
NB NM NS ZO PS PM PB

PM PM PS

PM PM PS

PS PS PS

PS PS ZO ZO ZO NS NS

NS NS NS

NS NM NM

NS NMNM

Single axis rotational equations were implemented for the pitch axis of the shuttle. The pitch
moment of inertia and the positive and negative pitch torques provided by jets were used in this
simple simulation to test the fuzzy controller rules. The shuttle jets provide a larger acceleration for
positive pitch as compared to the negative pitch. The simulation was set up to provide a constant
torque during a cycle time of 80 milliseconds. The pitch attitude and the rate are propagated at this
cycle time. When the fuzzy controller asks for a torque greater than 0.5, the constant torque is
provided in that direction, otherwise no torque is provided. This simulates the jet-on and off
activity at the appropriate time. The fuzzy controller is called at every cycle to evaluate all rules and
output the desired torque. Based on this torque the jet is turned on and the rate and angle are
propagated. With new values of angle and rate, the angle error and rate error are computed for the
next cycle input. Time is also advanced every cycle. Time histories of angle and rate, and the phase
plane plot are created for analysis.

Testing for the pitch axis so far has shown very satisfactory results. With several starting states,
i.e., initial angle and rate, the system has converged on the commanded value, and manifested a
relatively smooth limit cycle around the deadband. The control system response in all cases has
been as expected, including overshoot behavior in cases where initial rate error is very large. Tests
were performed with some rules turned off or deactivated to observe the performance with a
limited rulebase. The objective was to reduce the number of rules to a minimum.

Performance of the fuzzy controller with 25 rules was more than adequate for a single axis, and
gave us confidence to expand it to three axes case. The phase plane module in the Shuttle Digital
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MIN MAX

N'B NM NS ZO PS PM

-5 -4 -2 -1 0 1 2 4

PB

180

Fig. 5 MEMBERSHIP FUNCTIONS FOR PHI AND PHIDOT

MIN

-5

MAX

--4 -3 -2 -1 0 1 2 3 4 5

Fig. 6 MEMBERSHIP FUNCTIONS FOR ROTATIONAL ACCELERATION

94

C

O

..d



Auto Pilot (DAP) was replaced by this controller with all other interfaces unchanged. The
integration process was completed with only minor modifications to the interfaces. The simulation
testing included three axes attitude hold and single axis maneuvers. In a three axes attitude hold
case, the fuzzy logic based controller used only 30 % of the fuel used by the DAP. For the case of
attitude maneuvers, the fuzzy controller used around 60 % of the fuel used by the DAP. In both
cases, the fuzzy controller has shown comparable performance for maintaining attitude and body
rates. Detailed testing and analysis is planned to include other maneuver modes and different

parameters sets.

4.4 Camera Tracking Control System

Advanced sensor systems with intelligence and a distributed nature will be required for activities
like proximity operations and traffic control around the SSF. There will be several sensors of
different types providing various measurements simultaneously as input for processing to such a
system. Conceptual development of such a system [21] where several cameras, laser range finders
and radar can be used as independent components is in progress within the STL at JSC. The first

phase of this development is the camera tracking system based on the fuzzy logic approach that
utilizes the object's pixel position as inputs and controls the gimbal drives to keep the object in the
Field Of View (FOV) of the camera as shown in fig. 7.

Tracking of an object means aligning the pointing axis of a camera along the object's LOS. The
monitoring camera is typically mounted on the pan and tilt gimble drives which are capable of
rotating the pointing axis within a certain range. The task of the tracking controller is to command
these gimble drives so that the pointing axis of the camera is along the LOS vector which is
estimated from the measurements.

For the fuzzy logic based tracking controller, the inputs are range and LOS vector, and the outputs
are the commanded pan and tilt rates. The LOS vector is input in terms of pixel position in the
camera FOV. When an image is received, it is processed to determine the location of the object in
the camera frame which has the vertical, horizontal and pointing vectors as three axes. Usually an

image, particularly for complex objects, spans many pixels. Using a suitable technique, the
centroid of the image is computed and used as the current location of the object in the viewing
plane. This plane is a Cartesian coordinate plane having vertical and horizontal axes. The size of
the viewing plane is 170 x 170 pixels, and the origin is at the upper left comer as shown in fig. 7.
The range of the object is received from the laser range finder as a measurement. These three
parameter values are input to the controller.

Membership functions for the range, horizontal and vertical positions are shown in fig. 8 and the
membership functions for the Scale_Factor, Pan and Tilt rates are shown in fig. 9. For simplicity,
these functions are triangular shaped over the universe of discourse. The scale_factor parameter is
used as an intermediate step and provides the desired flexibility of changing the responsiveness of
the fuzzy controller.

The desired image location is the center of the viewing plane, which is at (85,85). If the current
location is close to the center, then rotation of the pointing axis is not required. If the location is to
the left of center then a left rotation is necessary. Similarly, if the image is down from the
horizontal line then a downward rotation is required. These rotations are determined using the
position and range measurements and the rule base shown in Table III. First the range
measurement is fuzzified and the value of the scale factor is determined based on the scale factor
rules. Necessary defuzzification processing is performed to compute the crisp value of the scale
factor. Then, the scale factor and the position measurements are provided to the next set of rules to
determine the rate at which the gimble drives should be rotated. There are 30 rules that determine
both, pan and tilt rates. Again, the necessary defuzzification processing is performed to compute
the crisp values of the pan and tilt rates which can be sent to the gimble drives as command values.
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200

RANGE PARAMETER

185 175 150 135 115 10b 85 65 50 20 10 0

FL

20

HORIZONTAL POSITION

LL CENTER LR FR

30 42 53 73 85 97 116 128 140 150 170

VERTICAL POSITION

FU LU CENTER LD FD

20 30 42 53 73 85 97 116 128 140 150 170

Fig. 8 Membership Functions for Input parameters
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HIGH

SCALE_FACTOR

MEDIUM

9 7 6 5 3

LOW

-6.0

PAN AND TILT RATES

FN SN ZR SP

-5.0 -3.0 0.0 3.0 5.0

FP

6.0

Fig. 9 Membership functions for Scale_Factor and

Output parameters for camera tracking system
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Table III. Rule base for the tracking task

Scale_Factor

Distance Membershi _ Functions

VFAR FAR NEAR VNEAR

LOW LOW MED HIGH

PROX

HIGH

Scale_Factor

Horizontal Position Membership Functions

FL LL CENTER LR

LOW

MED

HIGH

FN SN ZR

SN SN ZR

SN ZR ZR

SP

SP

ZR

Pan_Rate Membership Functions

FR

FP

SP

SP

Scale_Factor

Vertical Position Membership Functions

FD LD CENTER LU

LOW

MED

HIGH

FP SP ZR

SP SP ZR

SP ZR ZR

SN

SN

ZR

Tilt_Rate Membership Functions

FU

FN

SN

SN

Note - Negative Tilt_rate means the pointing axis going upward in FOV
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The camera is rotated based on these commands within the limits of its gimble rates and angles.
New LOS measurements in the camera FOV are obtained for the next cycle and the processing is

repeated. The cycle time is based on the processing time required for the following functions : I)
determining pixel positions, 2) obtaining a range measurement, 3) rotating the gimble drives at a
desired rate, and 4) the requirements to track the object within a certain performance envelope.

Typical cycle time ranges between 0.1 to 1.0 second.

There are several advantages of our approach that utilizes fuzzy logic in a camera tracking system.
This system will be a low power sensor as compared to an active sensor e.g. Radar in the Ku band
range, or LADAR using laser frequency. Typically, the active sensor radiates a power pulse
towards a target and receives back a reflected pulse. Based on the power transmitted, power
received and time between these pulses, parameters like range and range rates are calculated. Since
the camera tracking system will not be radiating power, it will be a low power sensor in
comparison with active sensors. Since there is already a shortage of power, an important
consUmable, onboard the SSF, availability of low power sensors is very important for continuous

operations. The SSF can afford to keep this type of a sensor working around the clock without
having much impact on the power management or other computational load on the main computers.

5.0 CURRENT ACTIVITIES

In this section, we describe the current ongoing activities in the STL in the area of fuzzy logic
research. A complete 6 DOF controller is created by combining the translational and rotational
controllers. Our integration approach and testing philosophy is described in section 5.1. Our plans
for software and hardware testing for the camera tracking system are described in section 5.2.
Activity in the area of motion control for Mars rover during sample collection process is described
in section 5.3 along with some preliminary results.

5.1 Combined Translational and Rotational Control for Relative Orientation and Distances

The integration approach adopted for combining translational and rotational control systems is
simple, straight forward and involves extensive testing [31]. The first step is to implement the
previously defined translational rules in the same format using our development environment. This
Will provide commonality between the code and allow an opportunity for stand-alone testing and
optimization of translational rules. The second step is to g.enerate the proper code for the SUN
workstation using the fuzzy-C compiler (with appropriate options) and transfer it to the
workstation. This step is required only because the development environment is on the 386
computer and the high fidelity simulation is on a SUN workstation. Since the fuzzy-C compiler
and associated development environment is portable, there is a plan to develop fuzzy controllers on
the SUN workstation and avoid the code transfer. The third step is to develop the test plan that

will test all aspects of the 6 DOF controller. The final step is to perform testing and compare the
results with the conventional system.

NASA's OOS [33] will be used for testing the 6 DOF controller. It is a high fidelity, multivehicle

spacecraft operations simulation that provides 6 DOF equations of motion within an orbital
environment including aerodynamic drag. It can be used for engineering analysis as well as real-
time operations demonstrations. It provides a framework to integrate and test expert systems and
hardware with the software modules commonly known as the onboard flight software. The OOS

(fig. 10) executive also provides external interfaces to graphics and expert systems.

The translational fuzzy control system [27] will be used by the autosequencer to generate proper
hand controller commands so that the desired range and range rate are maintained during proximity

operations. Typically, a shuttle pilot provides these input and controls the relative trajectory. Thus
the autosequencer will simulate the crew input via the translational fuzzy control system. The
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automatic attitude control system of the shuttle called onorbit DAP is implemented in OOS for
shuttle on-orbit operations. The rotational fuzzy control system created by replacing the phase
plane module will generate commands for jet-select to fire jets for attitude control. Existing
interfaces with the Phase Plane module will be maintained intact for the overall integrity of the

system. When both fuzzy control systems are used together, it will provide a total 6 DOF controller
for proximity operations.

A preliminary test plan has been put together to test the 6 DOF controller. It includes test cases for
stationkeeping with a fixed attitude, stationkeeping with attitude changes, LOS approach on V-bar,
LOS approach on R-bar, fly around at a constant distance with constant relative attitude, and final
approach for docking. Details of these test cases such as initial conditions, commanded attitude
maneuvers, etc. are being def'med to finalize the test plan.

5.2 Implementation of Fuzzy Controller for a Camera Tracking System using the software and
hardware set-up

Activities planned for this year for the camera tracking system include testing of the concept in
software as well as hardware simulations. The software testing will be performed in the STL using
a 386 based system as well as Sun workstations. The hardware testing will be performed in
collaboration with the Engineering Directorate at JSC. It should be emphasized that the software
testing will help fine tune the rulebase and the membership functions, while the hardware testing
will help to identify all interface problems, real-time performance evaluation, and fine tune the
controller in light of actual measurements which will be noisy. Both, software and hardware,
testing is required in order to make the system operational and useful.

The tracking controller described earlier in section 4.4 has been implemented using the fuzzy-C
development system and necessary software modules in C language have been generated. Its
interfaces with the sensor module that provides the measurements and the gimble drive module that
accepts the commands have been defined and implemented in C. A top level executive has been
designed as shown in fig. 11 with the necessary data flow and the state propagator for a target
vehicle. At this time, the Clohessy-Wiltshire equations of motion [34] in the LVLH frame will be
used to propagate the target state and to generate the camera measurements. A first order linear
gimble drive model has been developed for the pan and tilt servo drives to rotate the pointing axis
of the camera. The measurements for the range, horizontal and vertical positions are based on the
geometry in an LVLH frame. A detailed test plan will be defined to test the concept for several
different Scenarios. The fuzzy tracking controller will be tested for the following types of relative
trajectories • approach, fly-around, station-keeping, and passing orbits.

The hardware laboratory in the Engineering Directorate has the necessary equipment required for
testing: camera, gimble drives, laser range finder and other interface equipment. The camera
system will require a digitizer or pixel map generator and interfaces to the computer. The fuzzy
controller software developed in the STL will be ported to this computer which will have the
necessary hardware interfaces. A test plan that includes real moving targets in the laboratory and
various lighting conditions to simulate the orbital environment will be generated and the
performance of the fuzzy controller will be analyzed in detail. A study will be performed to
determine the responsiveness of the gimble drives with respect to the changing ScaleFactor
membership functions.

There is a considerable effort in the STL devoted to the development of algorithms for object
identification and pattern recognition. Particularly, the emphasis is given to the algorithms for

performing scene analysis and extracting the information from the image using fuzzyiness and
related parameters [35]. Results of this effort can be implemented and integrated at various levels in
the Concept of the camera tracking system to extend the capabilities of the sensor. At what level and
how to integrate these algorithms will be investigated as a part of our current activities.
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INITIALIZE ORBITAL STATE OF 1

I TARGET AND CAMERA

ORIENTATION IN LVLH FRAME

(_GENERATE RANGE AND 1
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I
FUZZY TRACKING CONTROLLER

BASED ON GIMBAL COMMANDS
COMPUTE NEW ORIENTATION OF
THE CAMERA SYSTEM
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Fig. 11 TESTING OF CAMERA TRACKING FUZZY CONTROLLER
IN SIMULATION SOFTWARE
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5.3 Trajectory Control for Mars Rover during Sample Collection

While collecting soil samples and surveying the Mars surface, the Mars rover will be moving from
one point to another among obstacles which cannot be identified prior to the mission. In order to
complete the collection task, the rover must interpret imprecise sensor measurements of obstacle
size and distance to determine which obstacles present a hazard and must be avoided and plan a
trajectory to avoid these unforeseen obstacles. In addition, since the worst case round trip
communications time between Earth and Mars will require 20 minutes, Earth-based tele-robotic
control of the Mars rover will be extremely difficult and time consuming and could seriously
endanger the success of the mission. Fuzzy trajectory planning and control provides robust real-
time control capable of adapting the trajectory profde to avoid unforeseen hazards. The fuzzy logic
approach eliminates communications travel time, allows the rover to avoid obstacles which may be
unavoidable due to tele-robotic reaction time, and provides adaptable control which will extend the
rover performance envelope.

A fuzzy logic approach to trajectory control has been developed [36] which allows the rover to
avoid these hazards during the sample collection process. The fuzzy trajectory controller receives
the goal or target point from the planner and uses X and Y position errors as well as orientation
(Yaw) error in the control system frame and commands the rover in terms of steering angle and
velocity. The fuzzy rule-base containing 112 rules for the controller, has been designed to drive the
rover towards the X-axis of the control error frame. As the rover approaches this axis, the rover is
commanded to the correct orientation error and then slowly drives towards the target point.

The X and Y position error variables were modeled as a shouldered membership set of 5 piece-
wise linear functions [19] with a universe of discourse ranging from -100 to 100 meters. The
orientation or yaw error variable was modeled as an unshouldered membership set of 7 functions
_with a universe of discourse ranging from - 180 to 180 degrees. The steering variable was modeled
as an unshouldered membership set of 5 functions with a universe of discourse ranging from -30
to 30 degrees. Finally, the velocity variable was modeled as an unshouldered membership set of 7
functions with a universe of discourse ranging from -5 to 5 meters/second.

A fuzzy trajectory controller for a Mars rover has been tested on several cases. Preliminary results
have shown that the trajectory controller can reach the target position and attitude within 0.0005
meters on the x-error axis, 0.25 meters on the y-error axis, and 0.45 degrees yaw error. It is
believed that these accuracies can be reduced by altering the membership function sets for the
inputs and outputs. Further testing will facilitate the tailoring of the membership functions to the
fuzzy rule set. Our activities in this project have shown that the fuzzy approach provides a control
system which can be easily modified and tested.

6.0 FUTURE PROJECTS

In this section, the future activities that are planned for fiscal year (FY) 1991 and beyond are
described with an expectation that these activities will be fully funded for new technology
development. Activities in the area of traffic management around the SSF utilizing the camera
tracking system are described first. Then, the development of reinforcement learning during
docking and repair operations is described. Development of a concept for a health monitoring
system is described last.

6. I Application of Camera Tracking System for Traffic Management

Future operations around the SSF will include many vehicles approaching and departing the facility
simultaneously. The crew onboard the SSF will have to perform traffic management functions very
actively for safety reasons. The camera tracking system can be used effectively during these
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operations and can help the crew to efficiently manage traffic around the SSF. During assembly
and other Extra-vehicular operations, tracking and monitoring of other objects around the SSF is
required for mission success. As part of our future activities we will investigate the applicability of
the camera tracking system to the problem of traffic management around the SSF.

As part of our current activities we are planning to implement the fuzzy tracking controller in the
hardware laboratory in the Engineering Directorate. The tracking controller will be interfaced with

the gimble drives and a pixel map from a camera. It is also possible to interface the output of the
camera to the fuzzy processor which can run the fuzzy controller and command the gimble drives.
It is planned to purchase suitable fuzzy hardware and perform the necessary testing to prove the
concept at the hardware level. We will investigate the performance of fuzzy chips for accuracy,
timing and interfaces with a main computer. The use of the concept for several space station
applications will be relatively easy and realizable.

The capabilities of the tracking controller can be expanded to perform other functions such as
approach toward the object, grapple, object identification, traffic management, and caution and
warning to crew. Fast moving objects can be identified easily via prediction of position and thus
collision avoidance can also be achieved. Since the system can work as a stand-alone system at the
command level and will interrupt the operations flow only if necessary, it can become a node in a
distributed sensor system.

6.2 Reinforcement Learning for External Environment during Docking and Repair Operations

A Space Shuttle crew initiates proximity operations procedures and docking maneuvers, when the
Orbiter is within 1000 feet of the payload. It is expected that the payload will remain in a stable
attitude and in nearly the same orbit during this entire time. Typically, the crew performs an
approach known as the v-bar approach, keeping manual control of the Orbiter. Docking maneuvers
with the payload are also performed manually. The manual procedures and algorithms used during
these tasks by the crew are developed using the real-time Shuttle Mission Simulator Facility on the
ground.

During proximity operations, if the procedures require some adjustment, the so-called fine tuning,
it is performed real-time, even if it was not learned in the real-time simulation. Real-time
adjustments are achieved based upon the current situation (e.g. satellite is not in a stable attitude or
its orbit is constantly changing) and goal achievements. Thus the crew constantly learns and
updates these procedures and algorithms as their experience base builds-up.

It has been shown that a Fuzzy logic controller can perform the same activities autonomously using
sensor measurements as inputs. Fuzzy membership functions and the associated rule base [27,28]
have been developed utilizing the same procedures used by the crew during mission operations. A
fuzzy reinforcement learning method [37] has been developed at Ames Research Center (ARC)
using the inverted pendulum. The fuzzy controller can be combined with the reinforcement learning
technique to give it a capability to learn real-time and improve its performance. With this capability,
the fuzzy controller can adapt to a new environment and adjust its membership functions and/or
rules to appropriately perform the tasks, given enough training instances.

The objectives of this project are to: 1) combine the fuzzy controller developed for the translational
motion with the reinforcement learning technique, and 2) demonstrate its performance for the
translational control of a spacecraft during proximity and docking operations. This project will be
jointly undertaken by two NASA centers: JSC will provide a high fidelity spacecraft simulation,
testcases with input and output definitions, and preliminary rules and membership functions for the
fuzzy translational controller, while ARC will provide the learning elements with appropriate
interfaces to the simulation and updated rule base.
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An approach has been developed (as shown in fig. 12) to combine the fuzzy logic controller with
reinforcement learning so that a higher level of autonomy for spacecraft operations can be
achieved. Such an intelligent controller for a spacecraft is expected to adapt to the surrounding
orbital environment and adjust its control strategy. Initial work on this project has been started and

a project plan has been put together [38]. Details of the rule base, membership functions, input
parameters, output commands and other simulation interfaces are in work.

6.3 Concept Development for Health Monitoring System for Environment and Life Support
System for Large Volume Crew Quarters

Continuous monitoring and control of the Environment and Life Support System (ELSS) onboard
the SSF is required for the safety of the crew. The preliminary design of the ELSS control system
(also known as atmospheric control system) consists of temperature, pressure and composition
control which are highly interrelated. The composition control includes control of major cabin
atmosphere constituents, oxygen and nitrogen, and the control of humidity and trace contaminants.
This preliminary design is based on the following requirements [39].

Relative humidity must be maintained between 25 and 70 % with the constraint that the dew point
temperature is always maintained above 59 deg. F. The cabin temperature must be selectable
between 64 and 81 deg. F and must be controlled within one deg. accuracy. The cabin atmospheric
pressure must be maintained at 14.7 psia within 0.2 psia accuracy. The oxygen partial pressure
must be maintained at 2 psia.

The system dynamics model or the plant that represents the behavior of the system is non-linear
and parameters are highly interrelated. The system equations can be linearized when the volume of
the Cabin is small and several simplifying assumptions are made. However, the dynamics becomes
increasingly complex and non-linear as the volume of the crew quarters increases significantly. In
such cases, applying conventional control theory will be very difficult, if not impossible.

In order to properly control the system state, highly accurate information regarding the current state
of the system is required. Multiple sensor measurements are required to derive this accurate state
information. It should be noted that the accuracy of state information is dependent on sensor

accuracy. The sensors will possibly be distributed over the entire volume of the cabin. Thus, the
problem can be thought of in two steps: deriving state information based on sensor measurements
and controlling the deviations from the desired state. The first step relates to the interpretation of
measurements, particularly their accuracy. The second step relates to the control of the state.

A concept of a fuzzy logic based monitoring and diagnosis has been developed to combine several
sensor measurements and derive the state information of a non-linear system. The concept can be

expanded to maintain a desired state, detect potential component failures and generate immediate
advisory messages for corrective actions. As part of our activities in FY91, we will apply this
concept to the ELSS of SSF and implement a fuzzy rulebase and membership functions. We will
further generate a software demonstration as a proof of the concept and evaluate the suitability of
the fuzzy logic based monitoring technique.

7.0 SUMMARY

Applications of fuzzy logic in autonomous orbital operations are described in this paper with past
accomplishments at JSC. Current ongoing as well as future activities planned are also described.
The main objective of all these activities is to increase autonomy in orbital operations and thus
achieve a higher level of operational efficiency desired for future space operations. The approach is
to develop modular control that can be upscaled for greater autonomy, in an integrated environment.
The initial step is to develop a software controller and then to integrate it with hardware at
appropriate level. As the activities progress, detailed testing will be performed to check out
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implementation and integration of components. Our preliminary results promise a very successful
utilization of fuzzy logic in autonomous orbital operations.
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ABSTRACT

A method for on-line SSME anomaly detection and fault typing using a feedforward

neural network is described. The method involves the computation of features

representing time-variance of SSME sensor parameters, using historical test case data.

The network is trained, using backpropagation, to recognize a set of fault cases. The

network is then able to diagnose new fault cases correctly. An essential element of the

training technique is the inclusion of r_ndomly generated data along with the real data,

in order to span the entire input space o¢ ootential non-nominal data.
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1. Introduction

NETROLOGIC has devised a new system that uses neural networks for on-line

detection of fault conditions in the Space Shuttle Main Engine (SSME). In order to

recognize danger signs early enough to shut down the rocket engine and minimize

damage resulting from unforeseen malfunctions, an SSME fault detection system needs

to be faster and more accurate than existing systems. Even with the current failure

response systems which utilize automatic redlining, redundant sensor and controller

voting logic, and human monitoring, post test analysis shows the emergence of

anomalous engine behavior well before a shutdown sequence is initiated. Neural

networks can provide improved test-stand SSME fault detection with natural extensions

to in-flight monitoring.

A fast SSME diagnostic method is essential since a large number of simultaneous

sensor measurements (over 200 are available) are input to a test shutdown decision

module at a high sampling rate. Sensor data fusion and evaluation are complicated

issues since clues to engine performance may involve subtle combinations of sensor

measurements varying through time. There is a high cost associated with unnecessary

shut-downs (false alarms) as well as missed detections (failure to detect an impending

catastrophe).

A detection system should not alter the current engine or control system and

should utilize all existing data. Since the SSME's major components are line replaceable

units, ideally a fault detection system should be independent of engine-to-engine

performance variation and of older engine failure signatures.

Neural networks can contribute to an effective solution since they are

1) fast, especially if implemented on parallel hardware;

2) capable of discovering subtle patterns of input data without

being explicitly taught what combinations are significant;

3) capable of generalizing based on previously learned examples; and

4) robust --- relatively insensitive to noisy data.

2. Data Source an i Description

We used the well-known backpropagation to train our three layer feedforward

network with training examples from sensor data from actual SSME test cases (see

Figure 1), conducted between 1981 and 1989. Most of the data resulted from recordings

of cases in which faulty engine performance occurred. We restricted our attention to

time periods after the SSME reached full power, since steady-state fault diagnosis is a

sufficiently difficult and important problem, and the use of data from periods of
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transient SSME operation would introduce considerable complications. We will

investigate the application of neural nets to failure detection during the transient phase
in the near future. Neural nets can recognize distinctive time series such as temperature
transients, and will be useful for rocket engine transient analysis.

The six fault cases that we have used represent failures of various types, caused

by malfunctions in different hardware components, such as a fuel leak in the main
combustion chamber outlet neck in one case, and a cracked liquid oxygen post in

another. Although this provides a variety of data for training and testing, it also means

that there is not enough fault data to generalize about any particular failure type.

In each of the fault cases we observed that there was a relatively long period

during which the SSME functioned normally prior to malfunctioning, consequently, there
was an abundance of nominal sensor data. However, there was a very limited amount
of fault data in three cases, because the interval between the fault-declare time and the

time of the last sensor measurements was very short (as short as 0.2 seconds).

The fault-declare time for each of the fault cases was based on an analysis of
failure investigation reports which showed the time when sensors started to indicate

signs of problems or faulty performance. We determined the time when a fault-
detection system should have been able to declare that something was wrong enough to
warrant shutting down the SSME. Sensor samples taken before the fault-declare time
are considered nominal, and samples taken after that time are considered fault data.

We only used a subset of the total number of different sensor measurements,
referred to as Parameter Identifiers (PIDs). These PIDs were sampled 25 times per
second. We selected twelve PIDs (see Figure 2) for use in our current study. Selection
of this subset of data was based on two factors:

1) Availability for all cases under investigation. Different test cases were
inconsistent in which sensors were installed and functioning. Since a fundamental

objective is to combine data from different test cases, and generalize to other cases, data
must have the same format for all cases. Therefore we only chose a PID if it was

available for nearly all of the cases used in our study. However, this is not an absolute
restriction: if a particular PID is missing from a particular test case, it is possible to use
null values for that PID in that case. In. fact, it is essential that our method should

accommodate missing, faulty, or "dead" sensors.

2) Significance for diagnosis. Analysis of fault case profiles shows that, for a
given case, some sensors show strong early symptoms of faulty operation, while other
sensors appear to have less value for diagnosis. Naturally we chose PIDs which were

significant in the cases under investigation.
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3. Pre-Processing of Data

The inputs to the network were derived from PID values. Each sample fed into

the network corresponded to a particular point in time. However, the input values were
not simply the raw values for each PID at that time. The nature of the variation in PID
values over time may be more indicative of faulty performance than the value of the

PIDs at any isolated moment. For example, in case 901-331, fault symptoms included an

increasing HPOT discharge temperature concurrent with a decreasing MCC pressure.
Therefore, for each point in time, three features were calculated for each PID, which
take into account the medium, long, or short-term history of that PID leading up to that

time. These features are described in Figure 3.

Thus, the total number of simultaneous inputs to the network for each point in
time was three times the number of PIDs. We have used twelve PIDs and 36 input

units. In future studies, more features will be computed for each sample, to provide

more detailed input of time-variation of PIDs, or to explicitly input features which code

relationships between other features. In theory, the network is capable of performing
any computation on the inputs, so such compound features would be superfluous. In
practice, however, it might prove to be useful to input such features explicitly in order to
encourage the network to learn in a way that will lead to better generalization. The

three features currently used are minimal, yet appear to be sufficient for the tasks
attempted so far.

4. Network Architecture

We used a feedforward neural network model consisting of a layer of input units,

plus one or more layers of hidden units, plus a layer of output units. Units are
analogous to neurons. The connections between them are analogous to synapses. In the
feedforward model, each of the input units is connected to each of the hidden units, and
each of the hidden units is connected to each of the output units. Each of the
connections is characterized by a weight, which is the strength of the connection. In the
basic operation of the network, connections are one-way, going from inputs to outputs
(hence the name feedforward). Each unit attains a level of activation by taking the

weighted sum of its inputs. It then produces its own output, which is a function of its
activation. We have used the logistic function given by fix) = 1 / (1 + exp(-x)).

Feedforward networks can be trained to associate arbitrary input patterns with

arbitrary output patterns, and they have the ability to categorize and generalize, so that
similar inputs are mapped to similar outputs, and new input patterns (different from
those on which the network has been trained) will be mapped to outputs based on their

similarity to training patterns. Training is accomplished by the generalized delta rule

(backpropagation of error). After each input sample is fed forward through the
network, the output is compared with the desired output. The weights are then adjusted
iteratively to reduce any discrepancies (for a detailed description of backpropagation,
please see [6])
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The choice of how many hidden layers to use, and how many units to have in

each layer, is dictated by two opposing factors. On the one hand, it is generally easier

for a network to perform an exact mapping from a set of inputs to a desired set of

outputs, if there are more hidden units. On the other hand, if there are too many

hidden units, the network is liable to "over-learn" the training data, and may be less

successful at generalizing to new data. We have found that a single hidden layer of

three to six units is sufficient for the network mappings we have attempted so far.

5. Assignment of roles to output units

The output of the network represents its evaluation of the input data. The

activations of the output units are all floating-point numbers, which take on values

anywhere between zero and one. We currently use three output units, each of which

represents a different diagnosis category. The three categories are:

1) Nominal

2) Fault (of a type previously witnessed)

3) Deviant (anything that departs from nominal).

For each output unit, activation levels near 1.0 mean "yes", and levels near 0.0 mean

"no". Intermediate levels of activation may be regarded as the degree of confidence in

that diagnosis.

The first priority of an SSME fault detection method must be to decide when to

shut down the engine to minimize damage leading to a potential catastrophe. To the

extent that this is a yes-or-no decision, we only need to know whether or not the

engine's performance is nominal. This may be described as anomaly detection. Beyond

this, however, it may be necessary to distinguish between different failure types. This

will be true if different shut-down or safety procedures are employed depending on

failure type. Also, if the neural network forms a part of a larger fault detection system,

it may be of value for the network to report what failure type it perceives, thus

providing a more useful input to the rest of the system.

Fault detection should involve the notification of a failure, the isolation of the

type of failure, and the estimation of the severity. The detection of a failure which

would warrant a shutdown sequence was emphasized, the isolation and estimation

functions were secondary. Further study for isolation and estimation will also be

pursued, however, a system which emphasizes detection during testing would alleviate

some of the complexity or computational burden associated with pursuing all three goals

of fault detection simultaneously.

Under the constraint of limited fault data, and keeping in mind the primary
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importance of shut-down decision making, we focused on anomaly detection rather than
fault-typing, and employed only a single output unit for the "fault" category. In the
future, when more fault data (real or simulated) becomes available, our method may be
extended with no fundamental changes to incorporate more output units for individual

failure types.

Using only historical nominal and fault data, the network can be trained to
distinguish nominal and fault data that it is trained on, but when we ask it to generalize
to new cases (cases that have not been used for training), the results may be

disappointing. Unless a new case is very similar to one of the training cases, this new
fault data will not resemble the old fault data any more than it resembles the old

nominal data. In our experience, the network output "nominal" for all samples in the
new faault cases, both before and after the fault-declare time. Evidently the problem

was that the fault data in the training cases were too limited, involving only particular
PIDs with specific time profiles. A network trained to recognize a particular small set
of fault cases cannot be expected to recognize a new fault case, which is likely to involve

different PIDs indicating degraded performance with completely new behavior.

In order to train a network to distinguish nominal data from all possible non-
nominal data, we needed a source of non-nominal data. Fault data from real fault cases

were insufficient for this purpose since, even if we used all the fault data currently
available, it would still not span the entire space of potential non-nominal data.

Therefore, we experimented with using random data evenly distributed throughout the
total input space of the network. We called these data "deviant." The network was
given a combination of nominal, fault, and deviant data, and trained to recognize each
type. The extra task of recognizing deviant data forced the network to learn the
boundaries of the nominal data.

6. Training Method and Initial Results

Our usual method was to train a network on data from several SSME test cases

shuffled together with randomly generated "deviant" data, test the network on the
training cases, and also test on new cases. In three of the cases there were very low
proportions of fault data. Therefore, in order to train the network on a balanced set of
samples, the fault samples in those cases were duplicated a hundred times in the training
data file before it was shuffled.

When we trained and verified the network on actual fault cases, we found that

the network was capable of learning the training data with very high accuracy. It would

output "nominal" when fed nominal data, and "fault" when fed fault data. When learning
was not quite perfect, the incorrect outputs always occurred for data immediately before
or after the fault-declare time. This showed that the transition period around the fault-
declare time was the most difficult to learn, as it should be if the network was using

criteria involving the continuous progression of PID values through time.
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The only case which presented some difficulty was case 249. It is not clear from

post-test analysis what fault-declare time is appropriate for this case. Proposed times
range from as early as 320 seconds to as late as 405 seconds after start-up. When we
used an early declare time and combined case 249 with other cases for training, the net
had difficulty reconciling this with the other cases used during training. Apparently, the
data in the middle period of 249 is too similar to other data which is nominal, so that it
could only be learned as a fault through overlearning, that is, by paying too much

attention to distinguishing details with no relevance to fault symptoms.

Our initial results with generalizing to new cases were very promising. The

network was able to diagnose new fault cases correctly without training. As expected for

these cases, none of the data was evaluated as faulty. Data before the fault-declare time
was classified by the network as nominal, and data after the fault-declare time was

classified as deviant. The fault-declare times for untrained fault cases determined by the
networks have been remarkably consistent with the fault-declare times established on the

basis of expert post-test analysis. In case 249, mentioned above, a network (which had
been trained on cases 259, 331, 436, and random data) diagnosed the data as deviant

after 33I seconds; our proposed fault-declare times ranged between 320 and 405
seconds. The same network, when tested on case 340, output strongly deviant after 283
seconds. Our fault-declare times ranged between 280.3 and 290 seconds.

7. Other Failure Detection Systems

A typical tradeoff consideration for failure detection is detection performance
versus filter behavior under normal conditions. A design specific to certain failures may
provide failure isolation at the expense of performance in detecting nominal data.
Certain detection filters take into account such a tradeoff. Under normal or nominal
conditions, the bandwidths of the Kalman filters used in detection filters will be

increased to be sensitive to the failure isolation designs, yet this increase makes the
system more susceptible to sensor noise. With the incorporation of the deviant output,
neural nets do not have to be trained to detect specific failures and detection
performance will not be hindered under normal conditions. Normal operation should
not degrade, since neural nets can be insensitive to sensor noise.

Another failure detection system involves voting schemes. Such schemes can
efficiently rule out faulty sensors and are very useful for false alarms, but often pay the
price of hardware redundancy for a reliable means of failure detection. Failures such e_

thermal effects and power failures can also affect the "like" sensors utilized by voting
systems in the same way. Since failure detection involves voting between these like
sensors, a problem which affects all the sensors will not be detected.

Multiple hypothesis filter-detectors can be too complex for a practical failure

detection system [8], [9]. Multiple hypothesis filter-detectors are considered to yield the
best performance in the widest class of field for detection, isolation, and estimation, but
the complexity can be of major concern. These filters involve the computation of
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probabilities of all the types of failures under consideration, which may require much

time and storage capabilities. Neural nets, on the other hand, are not considered very
complex in terms of what the network or implementer has to do. Storage and time
considerations are not a problem with neural nets either. When implemented in massive
parallelism or by an accelerator board, neural nets are able to respond quickly. Very
little computational overhead exists since nets require only two matrix multiplication and
two activation applications. The matrices involved in the computation to determine the
output are the interconnection matrix between the input and hidden layer and the
interconnection matrix between the hidden and output layer. Since only two layers are
needed for a successful neural network, only two activation applications are required
also. Moreover, neural nets should be able to perform well for SSME fault detection.
Some other failure sensitive filters can also become oblivious to new sensor outputs by
learning the data too well. h these cases, the Kalman filter and the precomputed
covariance utilized become too small and, therefore, oblivious to new data.

Innovations-based detection systems, such as the generalized likelihood ratio

(GLR) test, can be sensitive to modeling errors [5], [9], The GLR test may provide fast
failure recovery, but it is imperative for a good estimation of failure parameters that the

model is accurate. Neural nets are not considered very complex and the creation of
accurate models is not difficult.

The key issues to be addressed in discussing the merits of one system compared
to another are complexity in implementation, performance with respect to false alarms
and delays in detection, and robustness, such as modeling errors and sensitivity concerns,
Our initial results indicate that neural nets do very well in resolving these issues in
comparison with other methods.
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Figure 1: SSME (Space Shut(le Main Engine) TEST CASES

Six Fault Cases

Case 901-331 July 15, 1981

LOX Post Fractures, Erosion-MCC

Time 152 - 233.48; Fault-Declare 232.3

2010 nominal, 28 fault, 2038 total samples

Case 902-249 September 21, 1981

Power Transfer Fallure, Turblne Blades

Tlme 261.96 - 450.56; Fault-Declare 320

l&51 nominal, 3265 fault, 4716 total samples

Case 901-340 October 15, 1981

Turn Around Duct Cracked�Torn

Time 201.96 - 300; Fault-Declare 280.6

1966 nominal, 486 fault, 2452 total samples

Case 901-364 April 7, 1982

Hot Gas Intrusion to Rotor Cooling

Time 131.96 - 230; Fault-Declare 210

1951 nominal, 501 fault, 2452 total samples

Case 901-436 February 14, 1984
Coolant Liner Buckle

Time 551.96 - 611.08; Fault-Declare 610.55

1471 nominal, 8 fault, 1479 total samples

Gase 750-259 March 27, 1985

MCC Outlet Manifold Neck, Fuel Leak

Time 41.96 101.50; Fault-Declare 101.3

1485 nominal, 4 fault, 1489 total samples

_¢o Nominal Cases

Ca#e 902-457 November 1988
Tlme 100 - 250

3751 nominal samples

Case 902-463 Februar 7 1989

Tlme 101.96 238.16

3405 nominal samples
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Netrologic SSME Fault Detection

Figure 2:

riDs (Parameter ID's) for SSME {'Space Shuttle Main Engine)

18 (566) Mcc CLI_ DS T

Main Combustion Chamber Coolant Discharge Temperature B

24 (371) MCC FU INJ PR (MCC HG IN PR)

Main Combustion Chamber Hot Gas Injector Pressure A

40 OPOV ACT POS

Oxidizer-Preburner Oxidizer Valve Actuator Position A

42 FPOV ACT POS

Fuel Preburner Oxidizer Valve Actuator Position A

52 (_59) HPFP DS PR

High Pressure Fuel Pump Discharge Pressure A

63 MCC PC

Main Combustion Chamber Pressure Average

209 (302) LPOP DS PR
High Pressure Oxidizer Pump Inlet Pressure A

231 (663) HPFT DS T1 A

High Pressure Fuel Turbine Discharge Temperature A

232 (664) HPFT DS T1 B

High Pressure Fuel Turbine Discharge Temperature B

233 HPOT DS T1

High Pressure Oxidizer Turbine Discharge Temperature A

234 HPOT DS T2

High Pressure Oxidizer Turbine Discharge Temperature B

261 ('764) HPFP SPEED

High Pressure Fuel Turbopump Shaft Speed

These are all CADS sensor measurements taken 25 times per second.

Numbers in parentheses are corresponding facility measurements.
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Netrologic SSME Fault Detection

Figure 3: Features computed for each PID, for each sample

(1)

(2)

(3)

Where,

( AVG2(0 - AVGI(0 ) / s

( AVG2(0 - AVG2(t0) ) / s

( X(0 - AVGI(t -.08) ) / s

AVGI(t) is the mean value of the PID for the 2 seconds

(50 samples) leading up to time t.

AVGI(t) is the mean value of the PID for the 0.08 seconds

(3 samples) leading up to time t.

s is the standard deviation of the PID value.

tO is time soon after SSME reaches steady-state operation.

X(t) is the value of the PID ac time C.

These three features are intended to encode the essential history

of each PID value, providing sufficient information for the neural

neework to perform fault diagnosis. They represent the degree of

chanEe (positive or negative) over medium, long, and short periods

of _ime.

The time cO is used to calculate a base average value for each

PID, to provide an unchanging reference point for measuring the

long-term change in the PID value. We have simply used the first
2 seconds of data in the time-sliceused for each test case to

compute AVG2(eO).

In order to make all of the network inputs fall within the same

range, all three feaeures are scaled according to the standard

devlaeion of the PID. The standard deviation does noC depend on

the particular test case; for each PID, a standard deviation is

calculated on the basis of all available test cases combined.
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Netrologic SSME Fault Detection

i
i

t

I
I
; !

I
i t

__ CL!DS T_ NCC
I'"

• ; |
! • °

• I 3

i

I
I

I I

I I

IHJ

!
I

i
I

I
!
i

I
I

I

PII_

I_OP DSPS_LIIPFT])ST1 _.

" I "........

!!
I'.i I

'i
°.

_01_ _CT?OS
I

l I

i

: i
I

: I
! •

_IPFTDS T1 B.

_CTPOS

I

,i °|

HI_T_ TI_

,I
I

"!!
I

",|
I
:I
.I

i ...wl .

li°.

i

8PFP DSPR_

f:
I,

il 'I

HPOTOS 12_

• o I
° •°

.°

•! .".
°•

.%,'
,°

• ° ..

s I
.w

• •
v. i
%:

%, ;.

o° ,°

IPD SPg"__

30 sec. HEI_OLO_IC,Inc.

Heural He_uork

Space Shuttle Hain Engine
Fault Diagnosis

Full-Power Test - High Pressure Fuel Turhop_p Failure

Fibre 4: Conceptual Diagram

This is a computer-screen image of our demonstration prosram.

The windows at the top of the picture are graphs of the twelve PID

values varying with time. The schematic diagram conceptually

portrays the neural network units and connections. Twelve inputs,

three hidden units, and a single output unit are shown (note that

our current approach actually employs 36 input, 6 hidden and 3

output units).
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Netrologic SSME Fault Detection

Figure 5: Graph of Neural Network Output

This shows the results of training the neural net on a case

where the prlmary and secondary faceplates burned causing a

problem in the main combustion chamber (901-331), a case where

cracks were found in the high pressure fuel turbopump (901-340),

and a case where a hotgas intrusion to rotor cooling occurred from

a breach in a kaiser helmet (901-364). After training, the

network was Ces_ed on case 901-436, where the high pressure fuel

turbopump was massively damaged. The graph shows that the neural

net provided earlier fault detection than that of the SAFD results

provided in the "Failure Control Techniques Report For The SSME, _

by Rocketdyne. The graph of the third output unit, which

indicates nominal data, is not shown. The nominal output is

simply the reflection of the deviant output around the horizontal

axis labelled 0.5.
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Netrologic SSME Fault Detection
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GOALS AND NATURE OF PROBLEM

USE TRAINABLE PATTERN CLASSIFIERS FOR SPACE SHUTTLE MAIN ENGINE
ANOMALY DETECTION

PROVIDE EARLIER AND MORE ACCURATE ON-LINE ANOMALY DETECTION

(PREVIOUS DETECTION SYSTEMS - REDLINES, HUMAN MONITORING - MISSED

EARLY SIGNS OF ENGINE FAILURE)

• IMPROVE TEST STAND MONITORING, EXTEND TO IN-FLIGHT MONITORING

SHUTDOWN DECISION MODULE MUST INTEGRATE AND EVALUATE LARGE NUMBER
OF SIMULTANEOUS SENSOR MEASUREMENTS AT HIGH RATE

HIGH PENALTY FOR

FAILURE TO DETECT IMPENDING CATASTROPHE

(TEST-STAND DAMAGE AS HIGH AS $26 MILLION FOR A SINGLE

FAILURE; FAILURE IN FLIGHT, IF IT EVER OCCURSI MAY CAUSE LOSS

OF HUMAN LIFE)

UNNECESSARY SHUT-DOWN (FALSE ALARM)

(CosTs THOUSANDS OF DOLLARS ON TEST STAND; IN FLIGHT,

EMERGENCY LANDING WITH ENGINE SHUT DOWN UNNECESSARILY MAY

ENDANGER LIFE)

130



AS SHUTTLE ENGINE FIRING IN PROGRESS, "RAW"INPUT TO ANOMALY DETECTION
SYSTEM IS SEQUENCE OF VECTORS

P(T i) i= O, i, ..., s-I

(S = # SAMPLES TAKEN SO FAR)

TIME STARTS FROM LAUNCH: To = 0

SAMPLES TAKEN AT REGULAR RATE

(TYPICAL SAMPLING RATE 25 PER SECOND,

OR ONE SAMPLE EVERY 0.04 SECONDS)

FOR EACH POINT IN TIME T, EACH COMPONENT OF P(T) IS THE VALUE OF A
PARTICULAR SENSOR MEASUREMENT

P(T) = (PI(T), Pz(T), ..., Pw(T))

(N = # SENSORS EMPLOYED)

SENSORS PI, Pz, .-" , P, REFERRED TO BY PARAMETER IDENTIFICATION

NUMBERS, OR "PIDS"
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OVER 200 PIDS AVAILABLE

TEST FIRING DATA NOT CONSISTENT:
FOR MOST TEST FIRINGS, SOME PIDS NOT PRESENT OR NOT VALID
(SENSORS NOT BUILT INTO EARLY VERSIONS OF ENGINES OR FAILED SENSORS)

CRITERIA FOR INITIAL CHOICE OF PIDS

• SUBSET OF PIDS USED IN ROCKETDYNE'S SAFD ALOGORITHM

• SIGNIFICANT FOR DIAGNOSIS IN ANOMALOUS FIRINGS UNDER INVESTIGATION

• AVAILABLE FOR MOST TEST FIRINGS UNDER INVESTIGATION

(DESIRABLE FOR GENERALIZING FROM ONE FIRING TO ANOTHER, BUT NOT

ABSOLUTE REQUIREMENT - HISSING OR FAILED SENSORS MUST BE TAKEN

INTO ACCOUNT ANYWAY)

METHOD ALLOWS FOR USING MORE PIDS IN FUTURE
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TWELVE PIDS USED IN CURRENT STUDY

Pie = MCC CLNT DS T

(MAIN COMBUSTION CHAMBER-COOLANT DISCHARGE TEMPER_,TURE B)

Pz4 = MCC FU INJ PR

(MAIN COMBUSTION CHAMBER HOT GAS INOECTOR PRESSURE A)

P4o = 0POV ACT P0S

(0XIDIZER-PREBURNER OXIDIZER VALVE ACTUATOR POSITION A)

P42 = FPOV ACT POS

(FUEL PREBURNER OXIDIZER VALVE ACTUATOR POSITION A)

Psi = HPFP DS PR

(HIGH PRESSURE FUEL PUMP DISCHARGE PRESSURE A)

P63 = MCC PC

(MAIN COMBUSTION CHAMBER PRESSURE AVERAGE)

P2o9 -
LPOP DS PR

(HIGH PRESSURE OXIDIZER PUMP INLET PRESSURE A)

Pz.zl = HPFT DS T1 A

(HIGH PRESSURE FUEL TURBINE DISCHARGE TEMPERATURE A)

P2_z = HPFT DS TI B

(HIGH PRESSURE FUEL TURBINE DISCHARGE TEMPERATURE B)

P_3 = HPOT DS T1

(HIGH PRESSURE OXIDIZER TURBINE DISCHARGE TEMPERATURE A)

P_4 = HPOT DS T2

(HIGH PRESSURE OXIDIZER TURBINE DISCHARGE TEMPERATURE B)

P261 = HPFP SPEED

(HIGH PRESSURE FUEL TURBOPUMP SHAFT SPEED)
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TEST FIRING MAY LAST OVER TEN MINUTES, SO NUMBER OF SAMPLES s MAY REACH
TENS OF THOUSANDS

• VECTORS P(T_), i = O, 2, ..,, S-I FORM s x N MATRIX (N = # PIDS)

THIS POTENTIALLY HUGE MATRIX MUST BE EVALUATED OUICKLY
(PREFERABLY BEFORE NEXT SAMPLE) PROVIDING STRONG MOTIVATION FOR

EXTRACTING MANAGEABLE (AND CONSTANT) NUMBER OF FEATURES FROM MATRIX,
USING FAST CLASSIFICATION ALGORITHMS AND MACHINERY, ESPECIALLY PARALLEL
PROCESSING

IDEALLY, SSME PERFECTLY UNDERSTOOD, HEALTH STATUS DETERMINED FROM
SENSOR MEASUREMENTS BY APPLICATION OF THEORETICALLY DEDUCED RULES

• BUT SSME IS COMPLICATED, ITS BEHAVIOR NOT ENTIRELY PREDICTABLE

MAIN RESOURCES FOR CREATING DIAGNOSTIC SYSTEM ARE

• EXPERT KNOWLEDGE
(MUCH OF THIS IN FAILURE INVESTIGATION SUMMARIES)

o DATA ACCUMULATED FROM PREVIOUS NOMINAL & ANOMALOUS SSME FIRINGS

USE TRAINABLE PATTERN CLASSIFICATION SOFTWARE TO LEARN TO CLASSIFY

TRAINING DATA, ATTEMPT TO GENERALIZE CORRECTLY TO NOVEL DATA

NEURAL NETWORKS OFFER

• SPEED, ESPECIALLY IF IMPLEMENTED ON PARALLEL HARDWARE

• AUTOMATIC LEARNING OF SUBTLE FEATURES IN LARGE OUANTITIES OF DATA

• CAPABILITY OF GENERALIZING BASED ON PREVIOUSLY LEARNED EXAMPLES
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SSME TEST FIRING DATA EMPLOYED FOR CLASSIFIER TRAINING AND TESTING

(FIRINGS CONDUCTED ON GROUND BETWEEN.1981 AND 1989)

TWO NOMINAL FIRINGS (902-457, 902-463)

SIX ANOMALOUS FIRINGS REPRESENTING VARIOUS FAILURE TYPES

(901-331) CRACKED LIQUID OXYGEN POST

(902-249) POWER TRANSFER FAILURE, TURBINE BLADES

(901-340) TURN AROUND DUCT CRACKED/TORN

(901-364) HOT GAS INTRUSION TO ROTOR COOLING

(901-436) HIGH PRESSURE FUEL TURBOPUMP COOLANT LINER BUCKLE

(750-259) FUEL LEAK IN MAIN COMBUSTION CHAMBER OUTLET NECK

(MORE TEST FIRINGS TO BE ADDED IN FUTURE)
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FAULT-DECLARE TIMES BASED ON FAILURE INVESTIGATION REPORTS FOR EACH FIRING,
PLUS AS OUR OWN ANALYSIS OF SENSOR DATA

FAULT-DECLARE TIME IS TIME WHEN SENSORS FIRST SHOW SYMPTOMS OF
FAULTY ENGINE PERFORMANCE, SO THAT AN ANOMALY DETECTION SYSTEM
IDEALLY SHOULD HAVE BEEN ABLE TO INITIATE SSME SHUT-DOWN

FOR NETWORK TRAINING, SENSOR SAMPLES TAKEN BEFORE FAULT-DECLARE
TIME CONSIDERED NOMINAL DATA, SAMPLES TAKEN AFTER THAT TIME
CONSIDERED ANOMALOUS DATA (HOWEVER SOME SAMPLES MAY BE LEFT OUT OF
THE TRAINING SET IF IN DOUBT WHETHER TO CONSIDER ANOMALOUS)

WHEN TESTING NETWORK PERFORMANCE, FAULT-DECLARE TIMES USED FOR

COMPARISON
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ATTENTION INITIALLY RESTRICTED TO PERIODS OF STEADY-STATEOPERATION

EXPLANATION FOR NON-ROCKET EXPERTS: THE SSME OPERATES AT VARIOUS POWER

(THRUST) LEVELSI MEASURED BY THE MAIN COMBUSTION CHAMBER PRESSUREI P63.

NORMALLY A FIRING HAS A SCHEDULED SEQUENCE OF POWER LEVELS. PERIODS

DURING WHICH THE POWER LEVEL IS HELD APPROXIMATELY CONSTANT ARE CALLED

"STEADY-STATE"e AND MAY LAST A FEW SECONDS OR A FEW MINUTES. IN BETWEEN

THE STEADY-STATE PERIODS ARE INTERVALS OF THROTTLING, KNOWN AS

"TRANSIENTS". TRANSIENTS USUALLY LAST ONLY A FEW SECONDS.

• MOST MAJOR FAILURES OCCURRED DURING STEADY-STATE

• TAILORING METHOD TO STEADY-STATE DATA ALLOWS USEFUL ASSUMPTIONS:

SENSOR VALUES NOT EXPECTED TO CHANGE SIGNIFICANTLY
(ALTHOUGH IN PRACTICE THEY CHANGE CONSIDERABLY)

• UNCHANGING VALUES CAN BE CONSIDERED NOMINAL

SAME CRITERIA FOR ENGINE HEALTH SHOULD APPLY REGARDLESS OF
AMOUNT OF TIME ELAPSED IN STEADY-STATE PERIOD

• TRANSIENT ANOMALY DETECTION INHERENTLY MORE DIFFICULT:

• SENSOR DATA CHANGE IN COMPLICATED WAYS

PATTERNS OF CHANGE MAY DEPEND ON EXACT NATURE OF TRANSIENT

(START & FINISH POWER LEVELSI RATE OF THROTTLINGI ETC)

NOT APPROPRIATE TO GENERALIZE ACCROSS SAMPLES TAKEN AT DIFFERENT

TIMES DURING TRANSIENTS

IN FUTURE, MOST TECHNIOUES WE EMPLOY FOR STEADY-STATE COULD BE
EXTENDED TO APPLY TO TRANSIENT ANOMALY DETECTION
(RECURRENT NEURAL NETWORKS PARTICULARLY PROMISING)
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AT-EACH TIME Ti, MOST RECENT SAMPLE P(T i) IS KEY DATA.FOR DIAGNOSIS

SAMPLES P(T_), J < i, ALSO PROVIDE IMPORTANT INFORMATION

• FOR DETECTING SIGNIFICANT CHANGES OR RECOGNIZABLE "FAULT
SIGNATURES" IN THE GRAPHS OF PID VALUES AS FUNCTIONS OF TIME

• FOR MEASURING DURATIONS OR COUNTING REPETITIONS OF POSSIBLY
ANOMALOUS CONDITIONS

• FOR COMPUTING MOVING AVERAGES, TO SMOOTH OUT "NOISE"

• IN ORDER TO CONSTRUCT AN ANOMALY DETECTION SYSTEM WHICH IS GENERAL

ENOUGH TO WORK ON VARIOUS ENGINES AT VARIOUS POWER LEVELS, IT MAY
BE DESIRABLE TO USE DATA FROM ONE TIME INTERVAL IN A GIVEN FIRING
AS A POINT OF REFERENCE FOR EVALUATING DATA FROM LATER TIME

INTERVALS IN THE SAME FIRING

PRE-PROCESSING OF PIDVALUES: CALCULATION OF FEATURES

• CONSOLIDATE RAW DATA FROM HUGE s x N MATRIX

(S = # SAMPLES P(Ti), i = 0, ..., s-l)

(N = # PIDS IN EACH SAMPLE)

• ENCODE ESSENTIAL TIME INFORMATION

• COMPOUND FEATURES MAY ALSO BE FORMED FROM PIDS BY CALCULATING

DIFFERENCES BETWEEN PIDS, AVERAGES OF PIDS, SPECIAL FORMULAS TO
COMBINE REDUNDANT PIDS, ETC
(SOME OF THE PIDS ARE IN FACT ALREADY COMBINATIONS OF THIS TYPE,
BUT WE HAVE NOT CREATED ANY NEW FEATURES ZN THIS WAY)

e SCALE AND TRANSLATE FEATURES SO

• ALL CENTERED AROUND SAME VALUE (E.G. ZERO)

e ALL VARY WITHIN SAME APPROXIMATE RANGE (E.G. BY SCALING
ACCORDING TO STANDARD DEVIATIONS)
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WE CURRENTLY CALCULATE TWO FEATURES FOR EACH PID

• RECENT CHANGE

Avgl(0-Avg2(0
O

LONG-TERM SMOOTHED CHANGE

Avg2(O-av,2(t,)

o

WHERE

Aug](O = MEAN PID VALUE FOR 0.12 SECONDS (3 SAMPLES)

Avg2(t) = MEAN PID VALUE FOR 2 SECONDS (50 SAMPLES)

(AVERAGES CALCULATED OVER TIME INTERVAL ENDING AT TIME t )

O = STANDARD DEVIATION OF PID VALUE

(MEASURED OVER ALL STEADY-STATE DATA FROM ALL AVAILABLE FIRINGS)

t s = TIME 3 SECONDS AFTER START OF CURRENT STEADY-STATE INTERVAL

THESE FEATURES RESEMBLE CALCULATIONS USED IN ROCKETDYNE'S SAFD

ALGORITHM
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RESULT OF PRE-PROCESSING IS o-DIMENSIONAL FEATURE VECTOR

X(T i) = (Xl(Ti) , X2(Ti), ..., Xd(Ti))

WHICH IS FUNCTION OF PID SAMPLES P(Ti), i = O, 1, ..., s

FEATURE VECTORS X HAVE FOLLOWING PROPERTY: THE ORIGIN OF D-DIMENSIONAL

FEATURE SPACE

0 = (0, O, ..., O)

WHERE ALL D FEATURES ARE ZERO, IS "MOST NOMINAL" OF ALL POSSIBLE
SAMPLES, SINCE IT INDICATES ALL SENSORS REMAINING AT CONSTANT LEVEL
DURING STEADY-STATE OPERATION

NON-ZERO VALUES OF FEATURES INDICATE DEVIATIONS FROM CONSTANT VALUE

TWELVE PIDS, WITH TWO FEATURES EACH, YIELD TWENTY-FOUR INPUTS TO
PATTERN CLASSIFICATION SOFTWARE
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NEURAL NETWORK ARCHITECTURE:

THREE LAYER FEEDFORWARD NETWORK TRAINED BY BACKPROPAGATION

O BIOLOGICAL ANALOGY: UNIT = NEURON, CONNECTION = SYNAPSE

LAYER OF INPUT UNITS

(ONE FOR EACH FEATURE = 24 INPUT UNITS IN CURRENT MODEL)

LAYER OF HIDDEN UNITS

(8 - 12 UNITS IN A SINGLE LAYER FOUND TO BE SUFFICIENT SO FAR)

LAYER OF OUTPUT UNITS
r

(ONE FOR NOMINAL-VS-ANOMALOUS DIAGNOSIS, OTHERS FOR FAULT TYPING)

EACH INPUT UNIT CONNECTS TO EACH HIDDEN UNIT, AND EACH HIDDEN UNIT
CONNECTS TO EACH OUTPUT UNIT

CONNECTIONS BETWEEN UNITS CHARACTERIZED BY WEIGHTS
(CONNECTION STRENGTHS): EXCITATORY OR INHIBITORY

CAPABLE OF PERFORMING ANY MAPPING FROM INPUTS TO OUTPUTS

TRAINING ACCOMPLISHED BY BACKPROPAGATION OF ERROR
(WEIGHTS CHANGED AFTER EACH TRAINING PASS ACCORDING TO GENERALIZED
DELTA RULE)

NOTE: CHOICE OF HOW MANY HIDDEN UNITS DETERMINED BY

NOT ENOUGH HIDDEN UNITS: IMPOSSIBLE FOR NETWORK TO PERFORM DESIRED
MAPPING ON TRAINING DATA

TOO MANY HIDDEN UNITS: NETWORK MAY OVER-SPECIALIZE ON

IDIOSYNCRACIES OF TRAINING DATA, FAILING TO FIND MORE GENERAL
FEATURES DISTINGUISHING DATA CATEGORIES
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NETWORK OUTPUT = CLASSIFICATION OF INPUT DATA

• SINCE FIRST PRIORITY OF DIAGNOSTIC SYSTEM IS SHUT-DOWN DECISION

MAKING, ESSENTIAL CLASSIFIER OUTPUT HAS ONLY TWO VALUES:

• ANOMALOUS (RECOMMEND SHUTTING DOWN ENGINE) OR

• NOMINAL (RECOMMEND PROCEEDING AS USUAL)

• MORE COMPLEX FORMS OF EVALUATION MAY PROVIDE

• DESCRIPTION OF ANOMALY, WHETHER OF KNOWN FAILURE TYPE

• WHICH ENGINE PARTS ARE INVOLVED

• ESTIMATE OF SEVERITY

• SIMILARITY TO DATA FROM PREVIOUS FAILURES

• DEGREE OF CONFIDENCE IN DIAGNOSIS

• ANOMALY DETECTION VS. FAULT TYPING

• FAULT TYPING REQUIRED IF SHUT-DOWN PROCEDURES DEPEND ON

FAILURE TYPE, OR NETWORK FORMS PART OF LARGER DIAGNOSTIC
SYSTEM (WHICH CALLS FOR MORE SPECIFIC DIAGNOSIS BY NETWORK)

• WE HAVE EXPERIMENTED WITH FAULT-TYPING, TREATING EACH
ANOMALOUS TEST FIRING IN TRAINING SET AS REPRESENTING ONE

FAULT TYPE

• CURRENT NETWORK CONFIGURATION HAS

• AN OUTPUT UNIT TRAINED TO FIRE LOW IF NOMINAL AND HIGH IF

ANOMALOUS

o ADDITIONAL OUTPUT UNITS FOR EACH FAULT TYPE

(I.E.r ONE FOR EACH ANOMALOUS TEST FIRING IN TRAINING SET)

• THUS WHEN TRAINING ON DATA INCLUDING FIVE ANOMALOUS FIRINGS,
WE EMPLOY SIX OUTPUT UNITS IN FEEDFORWARD NETWORK
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AVAILABLE NOMINAL AND ANOMALOUS DATA CURRENTLY VERY LIMITED

ONLY A HANDFUL OF TEST FIRINGS TO USE FOR TRAINING

(MORE NOMINAL DATA CAN EVENTUALLY BE OBTAINED FROM NASA, BUT

ANOMALOUS FIRINGS ARE RARE -- FORTUNATELY!)

EACH FIRING PROVIDES MANY DATA SAMPLES. HOWEVER SAMPLES PROM A

GIVEN FIRING TEND TO LIE ON A TRAJECTORY, EACH SAMPLE BEING CLOSE
TO PREVIOUS SAMPLE

IMPOSSIBLE FOR THIS LIMITED QUANTITY OF DATA TO COME CLOSE TO SPANNING
ENTIRE 24-DIMENSIONAL POTENTIAL INPUT SPACE

(IN 24-DIMENSIONAL SPACE M_ST POINTS ARE VERY FAR APART. THE NUMBER OF
QUADRANTS IN 24-SPACE IS 2-- = 16,777,216)

GENERALIZATION TO NEW DATA REQUIRES BOTH INTERPOLATION AND
EXTRAPOLATION

COMPLETE DECISION BOUNDARY BETWEEN NOMINAL AND ANOMALOUS REGIONS
CANNOT BE UNIQUELY DETERMINED FROM ANY FINITE AMOUNT OF TRAINING
DATA

NETWORK MUST BE TRAINED APPROPRIATE RESPONSE TO UNPRECEDENTED
INPUT DATA

UNLESS NEW ANOMALOUS FIRING VERY SIMILAR TO ONE OF TRAINING
FIRINGS, NEW ANOMALOUS DATA WILL NOT RESEMBLE OLD ANOMALOUS DATA
ANY MORE THAN IT RESEMBLES OLD NOMINAL DATA

NEED TO MAKE ASSUMPTIONS ABOUT SHAPE OF NOMINAL REGION TO BE

MAPPED OUT BY ANOMALY DETECTION SYSTEM, IMPOSE THESE ASSUMPTIONS
ON TRAINABLE CLASSIFIER

A BASIC ASSUMPTION WILL LEAD TO DETECTION OF NEW FAULT TYPES:
ANY NEW DATA SUFFICIENTLY DIFFERENT FROM ALL PREVIOUSLY

ENCOUNTERED NOMINAL DATA TO BE CONSIDERED ANOMALOUS

TO FORCE FEEDFORWARD NEURAL NETWORK TO CATEGORIZE NEW DATA IN

ACCORDANCE THIS ASSUMPTION, IT HAS BEEN FOUND ADVANTAGEOUS TO ADD
I M I T A T I 0 N NOMINAL AND ANOMALOUS TRAINING DATA TO
TRAINING DATA FROM ACTUAL SSME FIRINGS
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I GENERATE IMITATION DATA RANDOMLY DISTRIBUTED THROUGHOUT SUITABLE PART

OF INPUT SPACE

I IMITATION ANOMALOUS DATA EITHER RANDOMLY DISTRIBUTED (WHICH PLACES
IT GENERALLY FAR OUT IN INPUT SPACE) OR WITH VALUES OF SOME
COMPONENTS NEAR KNOWN FAULT READINGS)

IMITATION NOMINAL DATA WITHIN EXPECTED RANGES OF NOMINAL FEATURES
(CURRENTLY LIMITED EXPERIENCE WITH ADDING GENERATED NOMINAL DATA)

COMBINE RANDOM DATA WITH GENUINE NOMINAL AND ANOMALOUS DATA FOR
TRAINING

I TRAIN NETWORK TO CATEGORIZE GENERATED ANOMALOUS DATA AS ANOMALOUS,
GENERATED NOMINAL DATA AS NOMINAL

TASK OF RECOGNIZING GENERATED DATA FORCES NETWORK TO LEARN

BOUNDARIES OF EXPECTED NOMINAL REGION
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SOME FINDINGS AT INTERMEDIATE STAGE IN OUR RESEARCH

NEURAL NETWORK CLASSIFIER IS ALWAYS CAPABLE OF LEARNING TRAINING
DATA WITH VIRTUALLY 100_ ACCURACY, OUTPUTTING "NOMINAL" WHEN FED
NOMINAL DATA, AND "ANOMALOUS" WHEN FED ANOMALOUS DATA

GENERALIZING TO NEW (UN-TRAINED) ANOMALOUS FIRINGS HAS BEEN
SYSTEMATICALLY UNDERTAKEN ACCORDING TO SINGLE HOLD-OUT PRINCIPLE:

TRAIN NETWORK ON ALL TRAINING DATA (TO INCLUDE GENUINE DATA
FROM NOMINAL AND ANOMALOUS TEST FIRINGS AS WELL AS SOME
IMITATION ANOMALOUS DATA), EXCEPT FOR DATA FROM ONE TEST
FIRING DELIBERATELY WITHELD

TEST SAME NETWORK ON DATA FROM FIRING WHICH WAS WITHELD FROM
TRAINING

NETWORK HAS DEMONSTRATED ABILITY TO CORRECTLY CLASSIFY THIS DATA
THAT IS NEW TO IT AS NOMINAL UP UNTIL FAULT-DECLARE TIME, AND
ANOMALOUS THEREAFTER

POSITIVE RESULT OF GENERALIZATION IS CONTINGENT ON TRAINING WITH
RANDOM IMITATION ANOMALOUS DATA (OTHERWISE NEW DATA IS ALWAYS
CLASSIFIED AS NOMINAL)

FAULT-TYPING (ACTIVATIONS OF ADDITIONAL OUTPUT UNITS) IS LEARNED
CORRECTLY FOR TRAINING DATA, BUT NEW DATA IS NEVER CLASSIFIED AS
BELONGING TO ANY PREVIOUS FAULT-TYPE

NOW WHEN GENERALIZATION IS NOT SUCCESSFUL, CHIEF PROBLEM IS FALSE
ALARMS (CLASSIFICATION OF NEW NOMINAL DATA AS ANOMALOUS)

145



AN APPROACH HAS BEEN FOUND FOR RECOGNIZING WHEN A FALSE-ALARM IS
DEPENDENT ON FEATURES CORRESPONDING TO SINGLE PID, AND IMMEDIATELY
DETERMINING WHICH PID IS RESPONSIBLE:

MULTIPLE COPIES (ONE FOR EACH PID) OF EACH FEATURE VECTOR ARE
SEPERATELY FED THROUGH NETWORK

EACH COPY IS ALTERED BY HAVING FEATURES CORRESPONDING TO ONE OF
PIDS REPLACED WITH ZEROS (REMEMBER THAT FOR CURRENT FEATURES, ZERO
MEANS NO-CHANGE, AND NON-ZERO INDICATES DEVIATION FROM CONSTANT
STEADY-STATE VALUE)

NETWORK OUTPUTS FOR EACH COPY SHOW WHAT CLASSIFICATIONS WOULD BE
IF EACH PID IN TURN INDICATED NO CHANGE

ZEROING OUT PID RESPONSIBLE FOR FALSE ALARM RESULTS IN CORRECT
CLASSIFICATION AS NOMINAL UP UNTIL FAULT-DECLARE TIME, AND
ANOMALOUS THEREAFTER

SUCH RESULTS SUGGEST POSSIBILITY OF INCORPORATING VOTING SCHEME
INTO MAKING CLASSIFIER OUTPUT MORE ROBUST WITH RESPECT TO FALSE
ALARMS CAUSED BY ANY SINGLE FEATURE, IF IT IS FOUND APPROPRIATE TO
REOUIRE MORE THAN ONE PID TO MANIFEST SYMPTOMS BEFORE MAKING AN
ANOMALOUS CLASSIFICATION, OR SIMPLY AS AID TO ISOLATING POSSIBLE
SENSOR FAILURES
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WORK IN PROGRESS

FURTHER TRAINING AND TESTING OF FEEDFORWARD NEURAL NETWORKS,
EMPLOYING SEVERAL NEW KINDS OF SIMULATED OR MODIFIED SUPPLEMENTARY

TRAINING DATA:

GENERATE SIMULATED / MODIFIED DATA DYNAMICALLY DURING

TRAINING, RATHER THAN PUTTING INTO TRAINING DATA FILE AND
USING REPEATEDLY (MUCH MORE EVEN COVERAGE OF FEATURE SPACE)

RESTRICT RANDOM SIMULATED ANOMALOUS DATA TO STAY OUTSIDE OF

REGIONS ASSUMED TO BE NOMINAL (REOUIRE MINIMUM LENGTH FOR

ANOMALOUS FEATURE VECTORS, ETC --- MAY DECREASE FALSE-ALARMS)

USE RANDOMLY GENERATED NOMINAL DATA CLOSE TO ORIGIN

(JUSTIFICATION: NO GENUINE ANOMALOUS FEATURE VECTORS HAVE

BEEN OBSERVED WITHIN A CERTAIN RADIUS OF ORIGIN, BUT FALSE
ALARMS HAVE OCCURRED TflERE)

MODIFY GENUINE NOMINAL FEATURE VECTORS BY REPLACING SOME
COMPONENTS WITH ZERO VALUES (TO PREVENT FALSE ALARMS DUE TO

MISSING SENSORS, AND TO FILL OUT NOMINAL REGION IN ACCORDANCE

WITH ASSUMPTION THAT IN STEADY-STATE CONTEXT, UNCHANGING
SENSOR VALUE SHOULD NOT CAUSE FEATURE VECTOR TO BE REGARDED
AS ANOMALOUS)

MODIFY GENUINE ANOMALOUS FEATURE VECTORS IN SAME WAY (TO MAKE

ANOMALY DETECTION MORE ROBUST, NOT DEPENDENT ON ANY SINGLE
PID, TO GUARANTEE DETECTION EVEN USING TESTING METHOD
SUGGESTED ABOVE IN WHICH APPARENT ANOMALY DUE TO ONLY ONE PID
MAY NOT BE ENOUGH TO WARRANT ENGINE SHUT-DOWN)
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EXPERIMENTING WITH VARIATIONS IN TRAINING TECHNIOUE AND NETWORK
ARCHITECTURE, ESPECIALLY RECURRENT NETWORKS:

• RECURRENT NETWORKS DESIGNED TO CLASSIFY TIME SERIES DATA

ACTIVATIONS OF HIDDEN UNITS FEED BACK TO RETAIN MEMORY FOR
CLASSIFYING SUBSEQUENT INPUTS IN.TIME SERIES CONTEXT

AUTOMATICALLY LEARNED INTERNAL FEATURES OF RECURRENT NETS MAY
BE USEFUL ADDITION OR ALTERNATIVE TO OUR EXPLICITLY COMPUTED
CHANGE-MEASURING FEATURES
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USING SOME GEOMETRICAL PERSPECTIVES ON THE PROBLEM, EXPERIMENTING
WITH PLAUSIBLE ALTERNATIVE METHODS FOR EXTRAPOLATING FROM TRAINING
DATA TO DETERMINE BOUNDARIES OF NOMINAL REGION IN 24-DIMENSIONAL
VECTOR SPACE:

LENGTHS OF FEATURE VECTORS (_.E. DISTANCE FROM ORIGIN) FOUND
TO BE GOOD INDICATORS OF TRANSITIONS FROM NOMINAL TO
ANOMALOUS DATA

NOMINAL REGION COULD BE CHARACTERIZED BY ESTABLISHING MAXIMUM
LENGTH FOR NOMINAL FEATURE VECTORS IN ANY GIVEN DIRECTION

DETERMINE THESE MAXIMUM LENGTHS FOR TRAINING DATA, GENERALIZE
TO NOVEL DATA BY VARIATION ON NEAREST NEIGHBOR PRINCIPLE,
DEFINING NEARNESS ACCORDING TO ANGLES BETWEEN VECTORS

INITIAL IMPLEMENTION OF THIS APPROACH USES SEOUENTIAL

ALGORITHMS, COULD BE IMPLEMENTED IN PARALLEL (ALONG SIMILAR
LINES AS THE PROBABILISTIC NEURAL NETWORK, WHICH ALSO
RESEMBLES NEAREST NEIGHBOR CLASSIFIER)
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Graph of Neural Network Output for Novel Data

A neura._ network was trained on data from all test firings .=xcept 90!-249, plus randomly

generated anomalous data_ The graph shows the activation of the nominal-versus-

anomalous output unit when the network was tested on firing 901-249.

The network clearly begins to detect an anomaly around 328 seconds, a few seconds after

symptoms began to occur according to Failure Investigation Summary. The SSME was

not actually shut down until 450.58 seconds, after massive damage had occurred.
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Example of a "False-Alarm" in Generalization to Novel Data

Network was trained by holding out only the anomalous firing 901-436, and te_ted on

",ha" fiffng. The _,.ctual '_ault di_ not ::)tour u_til 610 se.".onds, .",_'! eacly warrfi,',g :-:: _.ariv

shown on this graph does not appear to be realistic. Therefore this must bz re_ard_.d

as a false alarm.
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8.58

Result of zeroing out features for PID 24

in (he same "False Alarm" case

The time at which the graph of (he "deviant" output unit finally goes above .6 is now

precisely the fault-declare time determined by analysis for the novel anoma_ouc fiHr_g

90_--43,5. (FID 24, and the two features calculated were in fact out of range for the
training firings.)
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NEUROCONTROL AND FUZZY LOGIC: CONNECTIONS AND DESIGNS

by Paul J. Werbos
Room 1151, National Science Foundation

Washington, D.C. 20550

ABSTRACT

Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs

extract information from systems to be learned or controlled, while fuzzy techniques mainly use

verbal information from experts. Ideally, both sources of information should be combined. For

example, one can learn rules in a hybrid fashion, and then cah'brate them for better whole.system

performance. ANNs offer universal approximation theorems, pedagogical advantages, _ high-

throughput hardware, and links to neurophysiology. Neurocontrol -- the use of ANNs to directly
,. -.

control motors or actuators, etc. -- uses five generalized designs, related to control theory, which can

work on fuzzy logic systems as well as ANNs. These designs can: copy what experts do instead of

what they sa__; learn to track trajectories; generalize adaptive control; maximize performance or

minimize cost over time, even in noisy environments. Design tradeoffs and future directions are

discussed throughout.

This represents personal views only, not the official views of NSF. It is forthcoming in a special
issue of IJAR. As government work, it is legally in the public domain.
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combine ._ _

KNNs and Fuzzy Logic in General
q_

Neurocontrol is still a small part of the greater neural network community. Most people use

ANNs for applications like pattern recognition, diagnostics, risk analysis, and so on. They mostly

use ANN's to learn static mappings from an "input vector," _g, to a "target vector," Y. For example,

X might represent the pixels which make up an image, wh,'!e Y might represent a classification of

that vector. Given a training set made up of pairs of X and _ the network can "learn" the fnapping,

by adjusting its weights so as to perform well on the training set.

This kind of learning is ca[led "supervised learning." There are many forms of supervised

learning used by different researchers, but the most popular is basic backpropagation[1]. Basic

backpropagation is simply a unique implementation of least squares estimation. In basic

backpropagation, one uses a special, efficient technique to calculate the derivatives of square error

with respect to all '.he weights or parameters in an ANN; then, one adjusts the weights in proportion

to these derivatives, iteratively, until the derivatives go to zero. The components of X and Y may

be l's and 0's, or they may be continuous variables in some finite range.

Fuzzy logic is also used, at times, to infer well-defined mappings. For example, if X is a set of

data characterizing the state of a factory, and Y represents the presence or absence of various

breakdowns in the factory, then fuzzy rules and fuzzy inference may be used to decide on the

likelihood that one of the breakdowns may be present, as a function of X.

Which method is better to use, when.'?
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The simplest answer to this question is as follows: since ANNs extract knowledge from

databases_and fuzzy logic extracts rules from human experts, we should simply decide _ we trust

more, in th.____geparticular application. (When in doubt, we can try both and try for an evaluation after

the fact.) In principle, empirical data represents the real bottom line while expert judgment is only

a secondary source; however, when the empirical data is too limited to allow us to learn complex

relations, expert judgment may be all we have.

In many applications, there are some _ of the problem for which we have adequate data,

and others for which we do not. In that case, the practical approach is to divide the problem up,

and use ANNs for part and fuzzy logic for another part. For example, there may be an

intermediate proposition R which has an important influence on _.Y;we may build a neural net to

map from X to R, and a fuzzy logic system to map X and R into Y, or vice-versa. Amano et all2],

for example, have built a speech recognition system in which ANNs detect the features, and a fuzzy

logic system goes on to perform the classification. Many people building diagnostic systems have

taken similar approaches[3].

In the current literature, many people are using fuzzy logic as a kind of organizing framework,

to help them subdivide a mapping from X to Y into simpler partial mappings. Each one of the

simple mappings is associated with a fuzzy "rule" or "membership function." ANNs or neural

network learning rules are used to actually learn all of these mappings. There are a large number

of papers on this approach, reviewed in [4].^Because these are typically very simple mappings -

with only one or two layers of neurons -- we can choose from a wide variety of neural network

methods to learn the mappings; however, since the ANN's only minimize error in learning the

individual rules, there is no guarantee that they will minimize error in making the overall inference

from X to Y. This approach also requires the availability of dat..._&in the training set for all of the

intermediate variables (little R) used in the partial mappings. Strictly speaking, this approach is a
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special case of the previous paragraph; in the general case, some rules can be learned while others

come from experts.

Many people in fuzzy logic might say that fuzzy logic is more than just rules and inference.

There is also such a thing as fuzzy learning. In fact, much of the neural network literature on

learning (like backpropagation[1]) applies directly to _ well-behaved nonlinear network. It can

be applied directly to the inference structures used in fuzzy logic. We could easily get into a

situation where fuzzy logic people and neural network people use the exact same mathematical

recipe for how to adapt a particular network, and use different names for the same thing.

Personally, I would prefer to focus on the generalized mathematical learning rules, so that we can

speak a more universal language, and avoid distinctions without a difference.

There are some problems which cannot be easily subdivided into expert-based parts and

learning-based parts. For example, there are theories of international conflict which involve a rich

structure, containing a large number of parameters known with varying degrees of confidence; it is

important to expose the entire structure to the discipline of historical testing ("backcasting" and

"calibration"). In situations like that, the best procedure is to combine fuzzy logic and learning. (In

Bayesian terms, one would regard this as a convolution of prior and posterior knowledge, to

determine the correct conditional probabilities, conditional upon all available information.) For

example, we can use fuzzy logic and interviews with experts to derive an initial structure, and

estimates of uncertainty. Then, one can use generalized backpropagation directly to adjust the

weights (or uncertainty levels or other parameters) in that network. We can even use

backpropagation to minimize an error measure like:

where C_ is the prior degree of certainty about parameter W v and Wj c*)is the prior estimate of the
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parameter. This kind of convolution approach could also be applied, of course, to the learning of

independent rules or membership functions, as described in [4]. In a recent meeting to discuss long-

term strategic planning issues, I suggested a two-stage approach: (1) build up an initial inference

system or model using conventional techniques, which adapt individual rules or equations; (2) then -

- after assessing degrees of certainty - _ all of the weights in a "calibration" phase, using

backpropagation to make sure that the overall structure adequately fits the overall structure in

historical data.

So far as I know, the idea of applying backpropagation to a fuzzy logic network was first

published in 198815]. Matsuba of Hitachi, in unpublished work, first proposed the use of equation

1. Backpropagation is important in this application, because it can adapt multilayer structures.
, ..

Backpropagation cannot be used to adapt the weights in a more conventional, Bool6an-logic

network. However, since fuzzy logic rules are differentiable, fuzzy logic and backpropagation are

more compatible. Strictly speaking, it is not necessary that a function be everywhere differentiable

to use backpropagation; it is enough that it be continuous and be differentiable a/most everywhere.

Still, one might expect better results from using backpropagation with modified fuzzy logics, which

avoid rigid sharp corners like those of the minimization operator.

One reason for liking fuzzy logic, after all, is that it can do a better job than Boolean logic in

representing what actually exists in the mind of a human expert. This be.ing so, modified fuzz),

logics -- which are even smoother -- may be even better. Fu[6] has gotten good results applying

ost imple fuzzy logic" structures (using special rules to handle the corner points), while

Hsu et al[7] have proposed a modified logic. Presumably the fuzzy logic literature itself includes

many examples of smooth, modified fuzzy logics. Among the obvious possibilities are: (1) to use

simple ANN's themselves in knowledge representation; (2) to use functional forms similar to those

used by economists, in production functions and cost functions, with parameters to reflect the
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importance,thecomplementarityandthe substitutabilityof different inputs.

Fuzzylogichastheadvantagethat it canbeappliedin a flexible way, using a different inference

structure for each case in the training set. This inference structure may contain logic loops, which

go beyond the capability of what ANN people call "feedforward" networks. The inference structure

may be a "simultaneously recurrent" network. Nevertheless, backpropagation can be used on such

inference structures (using the memory-saving methods in [8]) to calculate the derivatives of error

with respect to every parameter, at a cost less than the cbst of invoking the inference structure a

single time. Thus one can use backpropagation here as well. Hybrid systems like this may be too

expensive to justify for unique applications, but they make considerable sense in generalized

software systems.

When complex inference is required, in fuzzy logic as in conventional logic, the design of an

inference engine can be very tricky. Neuroeontrol systems may be used, in essence, as inference

engines. In fact, I would argue that this is precisely how the human brain does inference -- that the

true "deep structure" of language is a collection of neural nets which learn, through experience, how

to perform more and more effective inference tin a nonBoolean environment). Inference may be

more difficult than other forms of control problem; however, there are parallels between

neurocontrol systems and existing inference engines which suggest some real possibilities here.

Stinchcombe and White have proven (IJCNN 1989) that conventional ANNs can represent

essentially any well-behaved nonlinear mapping. However, in applications of ANNs, many

researchers have begun to encounter the limitations of _ static mapping. In recognizing dynamic

patterns[l], like speech or moving targets, or in real-world diagnostics[9], it is often necessary to add

memory of the past. As one adds such memory, it becomes more and more important to build up

robust dynamic models of the system to be analyzed or controlled. Neural networks can do this[10],

in part by adapting intermediate features and developing representations which an expert might not
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have thought of.

Neurocontrol in General

In 1988, neurocontrol was just beginning a major period of growth. At that time, NSF

sponsored a workshop on neurocontrol at the Univers.ity of New Hampshire, chaired by W. Thomas

Miller[11], who brought together a small, mixed group of neural network people, control theorists

and experts in substantive application areas. In the very 6arly part of that workshop, a few people

echoed the old arguments about who is better -- control theorists or neural networkers. Within a

very short time, however, it became apparent that this issue was utterly meaningless, It was

meaningless because it revolved about a distinction without a difference. The reason for this is

illustrated in Figure 1.

INSERT FIGURE I (VENN DIAGRAM)

Figure 1 is a Venn diagram, telling us that neurocontrol is a subset both of neural network

research and of control theory. In the course of the workshop, it became apparent that the existing

work in neurocontrol could be reduced to five fundamental design strategies, each of which occurred

over and over again, with variations, in numerous papers. (Individual papers tend to highlight their

unique aspects, of course.) _ turned out to be _ approaches which could be applied to

large, sparse network of differentiable functions or to an even larger class of networks. One

may call these "functional networks," as opposed to neural networks. All five methods could be fully

understood as generic methods _ control theory. By remembering that neurocontrol is a subset

of both disciplines, we are in a position to draw upon both disciplines in developing more advanced

designs and applications.
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This situation is particularly important to fuzzy logicians, because the inference structures of

fuzzy logic are themselves functional networks. In this paper, I will present numerous boxes labelled

as "neural networks," but _ such box could just as easily be f'dled in with a fuzzy inference

structure varying over time. In other words, _ of the five "neurocontrol" methods can also

be applied _ to fuzzy learning as well. In practice, one would often want to fill in different

boxes with different things -- perhaps an ANN for one box, a hybrid neural/fuzzy map (as described

in the previous section) for another, and a conventional fixed algorithm for a third. This kind of

mixing and matching is quite straightforward, once one understands the basic principles.

Why should we be interested at all in the special case where the functional network is built up

from the traditional kinds of artificial neurons? Why shou',d We be interested in functional forms

close to the conventional form used _n ANNs[1]:

where:

x, - (:2)

s(z) - ? (s)
I +e "z

(Here, x, represents the "output" or "activation" of a model neuron, while W_ represents a %veighff

or "parameter" or "connection strength" or "synapse strength.')

There are at least four reasons for paying attention to the special case represented by neural

networks: (1) the universal mapping theorems of White and Gallant and others; (2) the availability

of special purpose computer hardware; (3) the pedagogical value of the special case; and (4) the

link to the brain.

The theorems of White and others have excited great interest in the control community, because

they show that conventional ANNs do something very similar to what Taylor series do -- provide

a basis for approximating an arbitrary nonlinear function. As with Taylor series, the nonlinearity
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is veu' simple, offering a hope of workable practical tools.

The availability of special purpose computer hardware is a decisive factor in favor of ANN's.

There are many cases where a task can be done equally well using conventional sequential methods

or neural nets, and where both approaches involve a similar degree of computational complexity.

(For example, there are cases where an ANN can simply be trained to mimic the input-output

behavior of an existing algorithm.) In such cases, ANN's may have a decisive advantage in real-

world implementation, because of the hardware.

Intel, for example, recently produced a neural net chip -- now publicly available -- under

encouragement from the U.S. Navy at China Lake (with some NSF support acknowledged in the

documentation). David Andes of China Lake has stated that one handful of these chips has more

computational power than all of the Crays in the world put together. This is critical in applications

where it is acceptable to add on a few extra chips, but not to haul along a Cray. Other companies -

- such as Syntonics in the U.S. and Oxford Computing in England -- have also come up with

impressive chips. Users without the technical knowledge (or clients) to wire up chips have reported

that the neural board by Vision Harvest, Inc. (which includes a special-purpose chip) offers some

of the same advantages. More and more products of this sort may be expected, especially if the

optical approach reaches maturity.

Fuzzy logic chips have also been developed. However, because of the complexity of fuzzy logic,

as normally practiced, these chips cannot take advantage of parallel distributed architecture as much

as neural chips do. At the recent conference in Houston on neural nets and fuzzy logic, the

Japanese developer of one of the leading fuzzy chips stated unequivocally that one could expect far

more computational throughput from a neural chip than from a fuzzy chip.

Harold Szu of the Naval Research Laboratories has often argued that digital parallel computers

constitute the real "fifth generation" of computers, as far beyond current PCs as the PCs are beyond
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the old LSI mainframes. In a similar vein, he argues that fixed-function, analog distributed

hardware -- either VLSI or optical -- represents a sixth generation. The NSF program in

neuroengineering got its start when people like Carver Mead[12] -- often viewed as the father of

all VLSI -- and people like Psaltis and Farhat and Caulfield (famous in optical computing) argued

that this sixth generation could achieve a thousand-fold or milllon-fold improvement in throughput

over even the fifth generation. The challenge was to find a way to use this hardware in a truly

general-purpose way. That is the goal which led to the neuroenglneerlng program at NSF. Some

engineers would simply define an ANN as a general-purpose system capable (in principle) of

efficient implementation in such hardware.

A third reason for being interested in neural networks as such is their pedagogical value. The

importance of this should not be underestimated. For example, when I in'st published

backpropagation as a generalized method for use with _ functional network, it received relatively

little attention, in part because the mathematics were unfamiliar and difficult. Later, when several

authors (including myself) presented it as a method for use with simplified ANNs -- with interesting

interpretations, with nice flow charts using circles and lines, and with easy-to-use software packages

(exploiting the simplicity which comes from giving the user no choice of functional form) -- the

method became much better known[13]. Even now, for many people, it is easier to learn how to

use a new design in the ANN special case, and then _ this knowledge, than it is to start

with the purest, most general mathematics. The explosion of interest in neural networks has also

been very useful in motivating a new generation of graduate students, with diverse _, to

learn the relevant mathematics. The effort to attract graduate students from diverse and

nontraditional backgrounds -- especially women and minorities - is now a major national priority,

because of the changing composition of the young adult population in the United States.

A fourth reason for being interested in neuroeontrol is the desire to be explicit about the link
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to the human brain. This llnk can be useful in both directions -- from engineering to biology, and

from biology to engineering.

The output of the human brain as a whole systerrl is the control over muscles (and other

actuators), as illustrated in Figure 2. Therefore the function of the brain as a whole system is

INSERT FIGURE 2 (BRAIN)

control, over time, so as to influence the physical environment in a desired direction. Control is

not _ of what goes on in the brain; it is the function of the whole system. Even though lots of

pattern recognition and reasoning and so on occur within the brain, they are best understood as

subsystems or phenomena wlthiq a neurocontroller. To understand the subsystems and phenomena,

it is most important to understand their function within the larger system. In short, a better

understanding of neurocontrol will be crucial, in the long-term, to a real understanding of what

happens in the brain. (For a more concrete discussion of this, see [10].) Because the mathematics

involved are general mathematics, they should be applicable to chips, to neurons, and to any other

substrate we are capable of imagining to sustain intelligence.

The brain is living proof that it is _ to build an analog, distributed controller which is

capable of effective planning (long-term optimization) under conditions of noise, qualitative

uncertainty, nonlinearity, and millions of variables to be controlled at once, all with a very low

incidence of falling down or instability. Control at such a high level necessarily includes pattern

recognition and systems identification as subsystems. Table I compares the five major design

strategies now used in neurocontrol against the four most challenging capabilities of the brain of

engineering importance.
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INSERT TABLE 1 (Matrix of capabilities versus methods)

******************************************************************************

Table 1 was developed two years ago[11], but it still applies to all the recent research which I

am aware of (except that a very few clever researchers like Narendra have developed interesting

ways to combine some of these approaches). Supervised ¢6ntrol is the strategy of building a neural

network which imitates a pre-existing control system; this is like expert systems, except that we copy

what a person _ instead of what he _ and can operate at higher speed..Direct inverse control

builds neural nets which can follow a trajectory specified by a user or a higher-level system. Neural

adaptive control does what conventional adaptive control does, but it uses neural networks for the

sake of nonlinearity and robustness; for example, an ANN may learn how to track an external

Reference Model (as in conventional MRAC design). Backpropagating utility and adaptivg critics

are two techniques for optimal control over time -- to maximize utility or performance, or to

minimize cost, over time. All five will be discussed in more detail in later sections.

Table 1 does suggest that we are now on a well-defined path to duplicating the most important

capabilities of the human brain. However, the human brain is more than just a set of cells and

learning rules. It is also a very lar_Lggmass of cells. For the next few years, it may be better to think

of ANNs as artificial mice (at best) rather than artificial humans. Mice are magnificent at some

very difficult control and even planning tasks, but they are not very good at calculus (or is it that

they don't pay attention?). Artificial humans are certainly possible, in my view, but there are many

reasons to move ahead one step at a time. Personally, I find myself most interested in the last

group of methods, because of its importance to understanding true intelligence; however, there are

many engineering applications where it pays to use a simpler approach, and the brain itself may be

a hybrid of many approaches.
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Areas of Application

Four major areas have been discussed at length [10,11] for possible applications of neurocontrol:

o Vehicles and structures

o Robots and manufacturing (especially of chemicals)

o Teleoperation and aid to the disabled

o Communications, computation and general-purpose modeling (e.g. economies)

This paper cannot describe all these areas in depth, but a few words may be in order.

In vehicles and structures, the aerospace industry has been a leader in applying these concepts.

Unfortunately, the most exciting applications remain proprietary. NSF has been mainly interested

in sponsoring high-risk applications which in turn serve as risk-reducers in high-risk projects of

economic importance. Risk reduction comes from providing an alternative, back-up approach to

solving very difficult problems which conventional techniques may or may not be adequate to solve.

The National Aerospace Plane is a prime example. The goal is not to replace humans in space, but

to improve the economics required to make the human settlement of space a realistic possibility.

In October of 1990, NSF and McDonnell-Douglas are planning to jointly sponsor a technical

workshop on Aerospace Applications of Neurocontrol, which will hopefully serve to advance this

area. Barhen of the Jet Propulsion Laboratory has discussed a possible $15 million per year

initiative on neural networks from NASA, with a control component. Ideally, there should be

NSF/NASA cooperation here, so as to stimulate the development and testing of the most advanced

forms of neurocontrol.

The chemical industry has also been quite active. Major sessions have been held at the

American Control Conference and at the annual meetings of the chemical societies on this topic.

The Chemical Reaction Processes program at NSF is also planning a workshop in October, focusing

on neurocontrol, and laying the groundwork for expanded activity. The Bioengineering and Aid to
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the Disabled program has recently held a broad workshop, to prepare for its approved initiative in

this general area.

All of these new activities were motivated by interests expressed in the engineering community

itself. There are many cases where industry or industry-oriented researchers are coping with

fundamental issues which mainstream academics are barely beginning to address.

Supervised Control and Convent|onal Fuzzy_ Control

In the usual expert systems approach, a control strategy is developed by asking a human expert

how to control something. Supervised control is essentially the ANN equivalent of that approach.

In supervised control, the first task is to build up a training se_ -- a database -- which consists

of sensor inputs (X) and desired actions (u_.). Once this training set is available, there are many

neural network designs and learning rules (like basic backpropagation) which can learn the mapping

from X to u.

Usually, the training set is built up by asking a human expert to perform the desired task, and

recording what the human sees (X) and what the human does (u_.). There are many variations of

this, of course, depending on the task to be performed. (Sometimes the input to the human, X_,

comes from electronic sensors, which are easily monitored; at other times, it may be necessary to

develop an instrumented version of the task, using teleoperation technology, as a prelude to building

the database.) The goal is essentially to "clone" a human expert.

Supervised control has two other applications besides cloning a human expert. First, it can

generate a controller which is faster than the expert. For example, a human might be asked to fly

a slowed-down Simulated version of a new aircraft. The ANN could then be implemented on a

neural net chip, which allows it to operate at a higher speed -- higher than what a human could keep

up with. Second, it can be used to create a compact, fast version of an existing automated
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conlroIIer, developed from expert systems or control theory, which was too expensive or too slow

to use in real-tlme, on-board applications. Supervised control is similar, in a way, to the old

"pendant" system used to train robots; however, unlike the pendant system, it learns how to

to different situations, based on different sensor input.

When should we use supervised control, with ANNs (or other networks), and when should we

use fuzzy knowledge-based control?

Knowledge-based control is like following what a person say.g while supervised control is like

copying what the person doe.__.ss.Parents of small children may remember the famous plea: "Do what

I say, not what I do." Knowledge-based systems obey this injunction. Supervised controUcrs do not.

There are many tasks where it is not good enough to ask people what they do, and fo_ow.those

rules. For example, if someone asked you how to ride a bicycle, and coded those rules up into a

fuzzy controller, the controller would probably fall down a lot. Your system would be like a child,

who just started riding a bicycle, based on rules he learned from h_s mother. The problem is that

your knowledge of how to ride a bicycle is stored "in your wrists," in your cerebellum and in other

parts of your brain which you can", download directly into words. A supervised controller can

imitate what you d._9_o,and thereby achieve a more mature, complete and stable level of performance.

(This may be one reason why children have evolved to be so imitative, whether their parents like

it or not.) Other forms of ANN control can go further, and learn to do better than the human

expert; however, it may be best to initialize them by copying the human expert, as a starting point,

in applications where one can afford to do so.

The example here does no__!ttell us that neurocontrol should be preferred over fuzzy logic in all

cases. As with the problem of learning a mapping, discussed above, the theoretical optimum is to

combine knowledge-based approaches and ANN approaches. As a practical matter, the theoretical

optimum is often unnecessary and too expensive to implement. However, there are tasks which are
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too difficult to do in any other way.

As an example, consider the problem of learning how to do touch-typing. Even a human being

cannot learn to do touch-typing simply by hunting and pecking, and graduaUy increasing speed. In

a technical sense, we would say that the problem of touch-typing is fraught with "local minima," such

that even the very best neural network -- the human brain -- can get stuck in a suboptimal pattern

of behavior. To learn touch typing, one begins with a teacher who explicitly conveys rules using

words. Then one free-tunes the behavior, using neural learning. Then one learns additional rules.

Only after one has initialized the system properly -- by learning all the rules -- can one rely solely

on practice to improve the skill. Morita et al[14] have shown how a _wo-stage approach --

knowledge-based control followed by backpropagation-based learning -- can improve performance,

in certain supervised control problems. There are other ways to deal with local minima, but they

_complkement the use of symbolic reasoning, rather than compete with it.

Advanced practitioners of supervised control no longer think of it as a simple matter of mapping

X(t), at time t, onto u(t). Instead, they use past information as well to predict u(t). They think of

supervised control as an exercise in "modeling the human operator." The best way to do this is by

using neural nets designed for robust modeling, or "system identification," over time. There is a

hierarchy of such ANN designs, the most robust of which has yet to be applied to supervised

control[10].

Supervised control with an ANN was f'u'st performed by Widrow[15]. Kawato, in conversation,

has stated that Fuji has widely demonstrated working robots based on supervised control. Many

other applications have been published.

Direct Inverse Contr_!
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Direct inverse control is a highly specialized method, used to make a plant (like a robot arm)

follow a desired trajectory, a trajectory specified by a human being or by a higher-order plannh-]

system. The underlying idea is illustrated in Figure 3.

****************************************************************************

INSERT FIGURE 3 (Direct Inverse Control)

Let us suppose, for example, that we had a simple robot arm, controlled by two joints. One

joint controls the angle 0_, and the other determines _. Our goal is to move the robot hand to a

point in two-dimensional space, with coordinates X_ and X,. We know that X_ and Xa are functions

of 0_ and Oa. Our job, here, is to go backwards -- for _ (desired) X_ and X_, we want to .calculate

the 0_ and 0_ which move the hand to that point. If the original mapping from (9 to X were

invertible (i.e., if a unique solution always exists for O_and O_), then we can try to learn this inverse

mapping directly.

To do this, we simply wiggle the robot arm about for awhile, to get examples of 0_, 0_, and the

resulting X_ and X_. Then we adapt a neural network to input X_ and Xa and output O_and _2. To

use the system, we plug in the desired Xa and X_ as input.

Miller[Ill has used direct inverse control to achieve great accuracy (error less than 0.1%) in

controlling an actual, physical Puma robot. Morita[14] has used direct inverse control with a fuzzy

network, but with an ANN learning rule, and claims that this is better than supervised control for

the same problem.

In direct inverse control, as in supervised control, it works better to think of the mapping

problem in a dynamic context[10], to get better results. This may explain why Miller has gotten

better accuracy than many other researchers using this method. (For example, some authors report

positioning errors of 4% of the work space. Miller's method may be like getting 4% error in
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reducing the remaining gap between the desired position and the actual position; as that gap is

reduced from one time step to the next, it should go to zero quite rapidly.)

Direct inverse control does not work when the original map from 0 to X is not invertible. For

example, if the degrees of freedom of the control variables (llke 1r) are more or less than the

degrees of freedom of the observable (like X), there is a problem. Eckmiller[16] has found a way

to break the tie, in cases where there are excess control variables; however, methods of this sort do

not fully exploit the value of additional motors in achieving other desirable goals such as smooth

motion and low energy consumption.

Kawato's "cascade method" (in [10]) and Jordan [17] describe more general ways of following

trajectories, which d...9.oachieve these other goals, by rephrasing the problem as one of. optimal

control. They define a cost function as the error in trajectory following, _ a term for jerkiness

or torque change. Then they adapt a neural network to minimize this cost function. To do this,

they use the backpropagatlon of utility - a different ANN design, to be discussed later on.

Neural Adaptive Control

Neural adaptive control tries to do what conventional adaptive control does, using ANNs instead

of the usual linear mappings. Because there are many tools used in conventional adaptive control,

this is a complex subject [10,18-20].

One common tool in adaptive control is Model Reference Adaptive Control, where a controller

tries to make a system follow specifications laid down in a Reference Model. In the conference on

neural networks and fuzzy logic in Houston this year, Narendra described a straightforward way to

do this with ANNs. One can simply define a cost function to equal the _ between the output of

the reference model and the actual trajectory, and then minimize this cost function exactly as Jordan

and Kawato did -- by backpropagatlng utility. In actuality, one does not have to use the
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backpropagation of utility to minimize this cost function; one could also use adaptive critic methods

here[10].

In adaptive control, the goal is often to cope with slowly varying hidden parameters. There are

tw.....2odifferent ways of doing this with ANN's, which are complementary. One is by real-time learning

-- where an ANN, like a biological neural network, adapts its weights in real time in response to

experience. Another is by adapting lmemo_ units which are capable of estimating the hidden

parameters. Even without real-time learning, it is poss_le to train an ANN _ so that it will

be adaptive in real-tkne, because of this memory[10]. Ideal/y, one would want to combine both

kinds of adaptation, but there is a price to be paid in so doing. The main price is that

backpropagation through time must be replaced by adaptive critics[10] both in control and in System

identification; the tradeoffs involved will be discussed in the next section.

In conventional, linear adaptive control it is often possible to prove stability algebraically in

advance by specifying a Liapunov function [18]. In nonlinear adaptive control, it is far more

difficult[20]. In actuality, however, the "Critic" networks to be discussed below function very much

like Liapunov functions (especially in the BAC design). For many complex, nonlinear problems,

it may be necessary to _ a Liapunov function after the fact, and verify its properties after the

fact, rather than specify it in advance.

Backpropaga_tlng Utility and Ada.ptlve Critics

General Concepts

Backpropagating utility and adaptive critics are two general-purpose designs for optima3 control,

using neural networks. In both cases, the user specifies a utility function or performance index to

be maximized, or a cost function to be minimized. In both cases, these designs will always have

more than ope ANN component. Different components are adapted by different learning rules,

aimed at minimizing or maximizing different things.
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There will always be an Action network, which inputs current state information (and perhaps

other information), and outputs the actual vector of controls, u_(t). The utility function itself can

also be thought of as a network (the Utility network), even though it is not adapted. (Some earlier

papers talked about "reinforcement learning, _ which is logically a special case of utility

maximization[10,11].) In most cases, there will also be a Model network, which inputs a current

description of reality, R(t), and the action vector u_(t); it outputs a forecast of R(t+ 1) and of

X(t+ 1), the vector of sensor inputs at time t+ 1. (In some cases, the Model network can be a

stochastic network, which outputs simulated values rather than forecasts.) Finally, in the case of

Critic designs, there will be a Critic network, which inputs R(t) and possibly u_(t), and outputs

something like an estimate of the sum of future utility across all future times. ..

The real challenge in maximizing utility over time lies in the problem of linking p_resent action

to future payoffs, across all future time periods. There are really only two ways to address this

problem, in the general case. One is to take a proposed Action network, and explicitly work out

its future consequences, for ev_xg._future time period. This is exactly what the calculus of variations

does, in conventional control theory, and it is also what the backpropagation of utility does. The

backpropagation of utility is equivalent to the calculus of variations, but -- because derivatives are

calculated efficiently through large sparse nonlinear structures -- one may hope for less expensive

implementation. A second approach is to adapt a network which predicts the optimal future payoff

(over all future times) starting from a given value for R(t+ 1), and to use that network as the basis

for choosing u_(t). This requires that we approximate the payoff function, .P, of dynamic

programming. This is the Adaptive Critic approach.

Ba ckpr oo_o_o_o_o_o_o_o_o_g_at in g Utility_

The backpropagation of utility through time is illustrated in Figure 4.
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INSERT FIGURE 4 (Backpropagating Utility)

In the backpropagatlon of utility, we must start with a Model network which has lre.a_Lr.g.___dbeen

adapted, and a Utility network which has already been specified. Our goal is to ad_dg.p.!the weights

in the Action network. (In practice, of course, we can adapt both the Action net and Model net

concurrently; however, when we adapt the Action net, we treat the Model net asif it were fixed.)

To do this, we start from the initial conditions, X(0), and use the _ weights in the Action

network to predict X(t) at all future times t. Then we use generalized backpropagation to calculate

the derivatives of total utility, across all future time, with respect to all of the weights in the Action

network. This involves backwards calculations, following the dashed lines in Figure 4. Then we

adjust the we{ghts in the Action network in response to these derivatives, and start all over again.

We iterate until we are satisfied. The mechanics are described in more detail in [1], but Figure 4

really tells the whole story.

The backpropagation of utility was In'st proposed in 1974121]. By 1988, there were four working

examples. There was the truck-backer-upper of Nguyen and Widrow, and the "cascade" robot arm

controller of Kawato, both published in [10]. There was Jordan's robot arm controller[17], and my

own official DOE model of the natural gas industry[22]. Recently, Narendra and Hwang have

reported success with this method.

The backpropagation of utility is a very straightforward and exact method. Unfortunately, there

have been few reported successes this past year. This may be due in part to a lack of

straightforward tutorials (though [1] and [22] should help). The biggest problem in practical

applications may be the difficulty of adapting a good Model network. In some applications, it may

be good enough to build a Model network which inputs X(t) and u(t), which uses X(t+ 1) as its
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target, and contains time-lagged memory units (as described in [1]) to complete the state vector

description; however, in some applications, it is crucial to go beyond this, and insert special "sticky"

neurons -- designed to represent slowly-varying hidden parameters -- and elements of robust

estimation [10].

The biggest limitation of backpropagating utility is the need for a forecasting model, which

cannot be a true stochastic model. In fuzzy logic, this is not so bad, because the variable being

forecasted may itself be a measure of likelihood or probability. In some applications, however -

like stock market portfolio optimization -- a more explicit treatment of probabilities and scenarios

may be important. There are tricks which can be used to represent noise, even when

backpropagating utility, but they are somewhat ad hoc and inefficient[10]. ...

Another problem in backprcpagating utility is the need to learn in an offline mode. The

calculations backwards through time require this. Various authors have devised ways to do

backpropagation through time in a time-forwards direction [e.g.23], but those techniques are either

very approximate or do not scale well with large problems or both; in any case, Narendra[19] has

questioned the stability of such methods. Nevertheless, even if we backpropagate utility in an

offiine mode, we can still develop a network which adapts in real-time to changes in slowly-varying

parameters; we can "learn offline to be adaptive online." [10]. This should be very attractive in

many applications, because true real-time learning is more difficult.

Adaptive Critics

Adaptive critic methods, by contrast, do permit true real-time learning and stochastic models,

but only at a price: they lack the exactness and simplicity of backpropagating utility. One reason

for their lack of simplicity is the wide variety of designs available -- from simple 2-Net structures,

which work well on small problems, through to complex hybrids, which hopefully encompass what
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goes on in the human braln[10,11].

Adaptive critic methods may be def'med, in broad terms, as methods which attempt to

approximate dynamic programming as In'st described in [24]. Dynamic programming is the

exact and efficient method available to control actions or movements over time, so as to maximize

a utility function in a noisy, nonlinear environment, without making highly specialized assumptions

about the nature of that environment. Figure 5 illustrates the trick used by dynamic programming

to solve this very difficult problem.

Figure 5 (inputs and outputs of dynamic programming)

Djr, amic programming requires as its input a utility function U and a model of the external

environment, F. Dynamic programming produces, as its major output, ano_hr function, J, which

I like to call a secondary or strategic utility function. The key insight in dynamic programming is

that you can maximize the function U, in the long-term, 0vet time, simply by maximizing this

function J in the immediate future. After you know the function J and the model F_, it is then a

simple problem in function maximization to pick the actions which maximize J. The notation here

is taken from Raiffa[25], whose books on decision analysis may be viewed as a highly practical and

intuitive introduction to the ideas underlying dynamic programming.

Unfortunately, we cannot use dynamic programming _ on complicated problems, because

the calculations become hopelessly complex. (Bayesian inference sometimes entails similar

complexities.) However, it is possible to approximate these calculations by using a model or

.n.etwork to estimate the J function or its derivatives (or something quite close to the J function, like

the J' function of [26] and [27].) Adaptive critic methods may be clef'meal more precisely as methods

which take this approach.
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If ',his _'d of design were truly fundamental to human intelligence, as I would claim, one might

expect to Fred it reflected in a wide variety of fields. In fact, notions like U and J do reappear in

a wide variety of fields, as illustrated in Table 2 (taken from [28]):

Table 2 (Examples of J and U)

Please note that the last entry in Table 2, the entry for Lagrange multipliers, corresponds to the

derivativ_ of J, rather than the value of J itself. In economic theory, the prices of goods are

supposed to reflect the changg in overall utility which would result from changing your level of

consumption of a particular good. Likewise, in Freudlan psychology, the notion of emotion.al charge

associated with a particular objec_ corresponds more to the derivatives of .1; "in fact, th_ original

inspiration for backpropagation[29] came from Freud's theory that emotional charge is passed

backwards from object to object, with a strength proportionate to the usual forwards association

between the two objects[30]. The Backpropagated Adaptive Critic (BAC) design reflects that theory

very closely. The word "pleasure" in Table 2 should not be interpreted in a narrow way; for

example, it could include such things as parental pleasure in experiencing happy children.

In order to build an adaptive critic controller, we need to specify two things: (1) how to adapt

the Action network in response to the Critic; (2) how to adapt the Critic network.

The most popular adaptive critic design by far is the 2-network arrangement of Barto, Sutton

and Anderson[31], illustrated in Figure 6. In this design, there is no need for a model of

the process to be controlled. The estimate of J is treated as a gross reward or

Figure 6. The 2-Net Design of Barto, Sutton and Anderson
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punishment signal. This design has worked well on a wide variety of real-world problems, including

robotics[32], autonomous vehicles and fuzzy logic systems. Williams, in [20], has reported some

interesting new results on convergence. Unfortunately, this approach becomes very slow as the

number of control variables or state variables grows to 10 or 100. The reason for this is very

straightforward: knowing J is not enough to tell us which actions were responsible for success or

failure, and it does not tell us whether we need _ or eL¢._of any component of the action vector.

This design is like telling a student that he or she did "well" or "poorly" on an exam, without

pinpointing which answers were right or wrong; it is a lot harder for a student to improve

performance when he or she has no specific idea of what to work on.

Fortunately, there are alternative designs which can overcome this problem. Note that it is

critical to modify both the Action network and the Critic network, to permit learning at an

acceptable speed when the number of variables is large (as in the human brain). There are also

some other tricks which can help, discussed by myself, by Barto, and by Sutton [10,11,20].

To speed up learning in the Action network, for arlEgg problems, there are now two major

alternatives: (1) the Backpropagated Adaptive Critic (BAC), shown in Figure 7;

(2) the Action-Dependent Adaptive Critic (ADAC), shown in Figure 8.

Insert Figures 7 and 8: BAC and ADAC (as adapting Action net)

The BAC design is closer to dynamic programming than is the 2-net design, because there is a more

explicit attempt to pick u(t) so as to maximize J(t+l), based on the use of generalized

backpropagation to calculate the derivatives of J(t + 1) with respect to the components of u(t). The

dashed lines in Figure 7 represent the calculation of derivatives. (Usually we adapt the _ in

the action network in proportion to these derivatives, rather than adapting _u(t) itself.) The cost of
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BAC is that we need to develop a Model network, as we do when backpropagating utility. The

adaptation of a good dynamic model can be a challenging task at times[10].

ADAC [26,27] avoids the need for an explicit model, but the Critic network in Figure 8 would

have to represent the comblnatJon of the Critic and Model in Figure 7. Jordan, in conversation,

has stated that he adapted an action-dependent Critic network in 1989, based on an independent

paper by Watkins on "Q learning" (discussed in [20]), but found the resulting Critic network to be

rather complex. In an ideal world, one would want to combine both approaches, so as to combine

the modularity and cleanliness of BAC with the model-independent robustness of ADAC; however,

BAC may be good enough by itself in many applications. Jameson has reported some preliminary

results with BAC[33], and other aerospace-oriented researchers may have dealt with larger

applications; however, more work is needed. Whatever the details, the adaptation oi" Action

network in large-scale problems is dearly central to the future of this discipline and of our ability

to understand organic intelligence.

In adapting the Critic networks, few people have gone beyond simple, scalar methods which are

more or less equivalent[34] and which have severe scaling problems. There are two alternatives

which should scale much better: (1) Dual Heuristic Programming (DHP), which outputs estimates

of the derivatives of J; (2) Globalized DHP (GDHP), which outputs an estimate of J (or its

components), but which adapts the Critic by minimizing error in the implied derivatives as well as

the estimate of J. These methods were In-st proposed in the 1970s [23,24], but are described in

more modern language in [10] and [11]. Both methods _ the existence of a Model network.

Hutchinson of BehavHeuristics has claimed real-world commercial success in applying such methods,

but many of the details are proprietary.

E__ample of a Hybrid System
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in DSS, a friend of mine asked how I would use these methods to assist in some very complex

social decision problems, well beyond the scope of this paper. Given the nature of his application,

I recommended a very conservative approach for the time being. As a first stage, I would obtain

a conventional sort of modeling system, capable of storing and analyzing time-series data, and

capable of manipulating forecasting models built up from any of three methodologies: (1)

econometric-style equations; (2) fuzzy logic; (3) ANN's. I would look for a _ capability, so that

models of specific sectors (built up from different methodologies and often revised) could be

combined together to yield composite streams of forecasts. Then I would build a general purpose

"dual compiler." The dual compiler would input a sectoral model (in text form or parsed into a

tree), and output a "dual subroutine" (like those in [1]), so as to facilitate the use of generalized

backpropagation. Then I would implement a whole set of tools using backpropagation.

Tool number one would be a simple sensitivity analysis tool. The user would type in a utility

function or target function. The tool would then calculate the derivatives of utility with respe, ct to

all of the inputs -- initial values, policy variables, and parameters -- which affected the original

forecast, in one quick sweep through the process. It would report back the ten or the hundred most

important inputs. (There is a scaling problem here in deciding which input is most important; the

user could be given a choice, for example, between looking for the biggest derivatives, the biggest

elasticities, or the biggest derivatives weighted by some other variables.) The user could go on to

make plans to changg these inputs, so as to increase utility, or he could first evaluate in detail

whether he believes that the inputs are really important. (Tests of this sort can in fact be very

useful in pinpointing weaknesses of an integrated modeling system[8], or real-world uncertainties

which require more analysis). The _ of a comprehensive sensitivity analysis is the key issue here;

using more conventional tools, one must often wait a long time and spend a lot of money to get

even a partial sensitivity analysis, and the results are usually out of date.
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Tool number two would help in reassessing the importance of the key inputs. For any given

input, it would use the intermediate information generated by backpropagation (as in [8]) to identify

the path of connections which really made that input important, It could even display this

information as a kind of tree or flow chart. This would be similar in purpose to the inference

sequences printed out as "explanations" by many expert systems.

Tool number three would be an extended version Of tools one or two. Instead of first

derivatives, it would provide information based on low-cost second derivatives (as described in [23],

based on calculations like those in [5,11]). For example, the sensitivity of utility to dollars spent in

1992 may be a key measure of policy effectiveness; it may be useful to see how that measure, in

turn, would be changed by other factors (such as diminishing returns or complementary variables).

At the optimum, the first derivative of utility with respect to any policy variable will be zero; the

derivatives of that derivative give information about why the policy variable should be set at a

particular level.

Tool number four would be a full-fledged version of backpropagating utility. The user could flag

certain variables or parameters as policy variables, and the computer would be asked to suggest an

optimal improvement upon current plans, so as to maximize utility. The resulting suggestion may

be a local minimum, but it should at least be better than the starting p!ans.

Tool number five would be a model calibration tool, based on the backpropagation of error, and

robust estimation concepts like those of [10]. At a minimum, this would be a relatively quick and

objective way to calibrate a model as a whole system to fit the past; it could replace the rather

elaborate and ad hoc "tweaking" which usually goes into most complex models in the real world for

calibration purposes. Tool number six would go back and identify how the resulting parameter

estimates or rules were influenced by different cases in the input dataset; this would provide an

integrated, nonlinear version of the highly respected linear diagnostic tools developed by Belsley,
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Kuh and Welsch[35].

These six tools are the most obvious needed tools, exploiting backpropagatlon, but a host of

other tools are possible involving estimation diagnostics, decision diagnostics and convergence tools.

Also, there is no need to develop the six tools in the order of my discussion.

In principle, one can even build a strategic assessment or stochastic planning tool, based on

adaptive critic methods but permitting user-speciged assessment models, as descried in [28].

To bring all these tools together in a general-purpose modeling package, capable of running on

desktop workstations, would not be a trivial task. However, there are important applications, and

some work has begun in this direction. All of these tools aim at effective two-way man-machine

communication, so as to exploit the capabilities of both forms of intelligence.

Conclusion_;

Neurocontrol and fuzzy logic are complementary, rather than competitive, technologies. There

are numerous ways of combining the two technologies. Which combination is best depends very

heavily on the particular application; there is always a tradeoff between "general syntheses" - which

combine everything but require the expense of implementing everything - and direct, simple designs

tuned to particular concrete problems. Given the natural human tendency towards inertia, it is

critical to be aware of a wide variety of options, and to ask "Why not?" when considering new

approaches. Even within neuroeontrol, there is a wide variety of designs available, ranging from

simple off-the-shelf technologies (easily applied to fuzzy logic networks) through to areas where

fundamental research is still needed and vital to our understanding of real intelligence.
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ABSTRACT

In the conception and design of intelligent
systems, one promising direction involves the use of
fuzzy logic and neural network theory to enhance
such systems' capability to learn from experience
and adapt to changes in an environment of uncer-
tainty and imprecision. This paper explores an intel-
ligent control scheme by integrating these multi-
disciplinary techniques. A self-learning system is
proposed as an intelligent controller for dynamical
processes, employing a control policy which evolves
and Improves automatically. One key component of
the intelligent system is a fuzzy logic-based system
which emulates human decision-making behavior.

Another key component is cognitive neural models
derived from animal learning theory, which stimu-

late memory association and learning behavior. It is
shown that the system can solve a fairly difficult
control learning problem. Simulation results
demonstrate that improved learning performance can
be achieved in relation to previously described sys-
tems employing bang-bang control. The proposed

system is relatively insensitive to variations in the
parameters of the system environment.

I. INTRODUCTION

During the past several years, a highly

promising direction in the design of intelligent sys-
tems has emerged. More specifically, the direction

in question involves the use of fuzzy logic and
neural network theory to enhance the ability of
intelligent systems that can learn from experience
and adapt to changes in an environment of uncer-
tainty and Imprecision. This paper provides a brief
introduction on a fuzzy logic-based system [16][17]

and cognitive neural models [18][19], and explores
an intelligent control system by integrating these
multi-disciplinary techniques. T.he approach

This researda was suppotaed in part by NASA Grant NCC-

2-275 and M cro Grant 88-094.

described here may be viewed as a step in the

development of a better understanding of how to
combine a fuzzy logic-based system with a neural
network to achieve a significant learning / adaptive

capability.

A. Why Fuzzy Logic Control?

There are many complex industrial processes
which cannot be satisfactorily controlled by conven-
tional methods due to modeling difficulties and una-
vailability of quantitative data regarding input-
output relations. And yet, skilled human operators
can control such systems quite successfully without
having any quantitative models in mind. Further-
more, the operation of many man-machine systems

requires the use of rules of thumb, intuition, and
heuristics. All of these features are uncertain and

imprecise and cannot be addressed adequately by
conventional methods. As the increasing complex-
ity and nonlinearity of control systems render con-
ventional methods less effective, a rule-based sys-
tem based on fuzzy logic becomes an increasingly
attractive alternative.

In fact, during the past several years, rule-
based controllers based on fuzzy logic [16][17] have
emerged as one of the most active and fruitful areas
for research in the application of fuzzy set theory
[34]. Among the representative applications of
fuzzy logic-based controllers are the subway system
in the city of Sendai [33], container ship crane con-
trol [32], elevator control [4][30], nuclear reactor
control [2][11], automobile transmission control
[23], air conditioners [22], anti-lock break systems

[24] and human-quality robot eyes [5]. Experience
shows that a rule-based controller using fuzzy logic

make it possible to emulate and even surpass the
decision-making ability of a skilled human operator.

Although there is an extensive literature
describing various fuzzy logic-based controllers
using approximate reasoning, the acquisition of the
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rule base in such controllers is not as yet well

understood, In past applications, fuzzy decision
rules are either obtained from verbal expressions or
observations of human operator control actions.
Since domain experts and skilled operators do not
structure their decision making in any formal way,

the process of transferring expert knowledge into a
usable knowledge base is tedious and unsystematic.
Our research aims at the development of a better
understanding of such problems, with a view to
enhancing the potential of fuzzy logic-based con-
trollers, which can operate effectively in an environ-
ment of uncertainty and imprecision.

One direction that is beginning to be explored
is that of the conception and design of fuzzy sys-
tems which have the capability to learn from experi-
ence. In this context, a combination of techniques
drawn from both fuzzy logic and neural network
theory may provide a powerful tool for the design
of intelligent systems which can emulate the
decision-making ability of a skilled human operator
and the ability to learn and adapt to changes in an
environment of uncertainty and imprecision.

B. Why Cognitive Neural Models?

The theory of animal learning is inferred from
observed behavior and constitutes carefully testified
postulates regarding elemental processes of learning.
Recent research into animal learning can be
separated into two categories: the behavioral and
neural subsa'ates of learning, namely, the psycholog-
ical and physiological levels of learning. One way
to bridge such a gap is to postulate neural analogies
of behavioral modification paradigms. Hebb's postu-
late [9] for synaptic plasticity was the first trial as a
neural analogy of associative learning, which
attempted to bridge psychology and neurophysiol-
ogy. The theory of adaptive networks originated
with [9] and continues to be influenced by plausible
neural analogies of behavioral conditioning [6][12]
[7] [28] [26] [29] [13] [27] [14] [8][ 15].

Contemporary artificial neural networks are
frequently referred to as connectionist models, paral-
lel distributed processing (PDP) models, and adap-
tive / self-organizing networks. Basically, it is a
complex system of neuron-like processing units that
operate asynchronously but in parallel and whose
function is determined by the network topology of

connectivity. Artificial neural networks provide a
new computational structure, a plausible approach
for information processing because of its adaptivity /

learning as well as massive parallelism.

Although new learning algorithms and VLSI
technologies have recently provided strong impetus
to neural network research, many problems still
exist. Among them, the comprehensibility of neural
networks, theoretical parsimony / enormous cost,
and limited empirical successes are some of the
major issues underlying the limitations of current
neural networks. The learning behavior of such net-
works is difficult to understand, and the role of gen-
etic elements and subnetworks is unclear. Further-
more, most of these networks lack a theoretical

foundation. The time and effort required to develop
neural network architectures (network topology) and

training is very high. Research has been directed in
the main at "modeling applications", while relatively
few "fielded applications" have emerged [3]. Most
of such applications are restricted to pattern recogni-
tion, categorization, and realizations of associative
memory. They are still toy research problems at the
proof-of-concept stage. Among the few exceptions,
the Adaptive Channel Equalizer (developed by Ber-
nard Widrow) is perhaps the most commercially
successful of all neural network applications to date.
It is a single-neuron device used now in virtually all
long-distance telephone systems to stabilize voice
signals [3].

Klopf [13] has postulated that, "An intelligent
system will have to build on a foundation that
amounts to a highly detailed, immense microscopic
knowledge base, a knowledge base that can be inter-
faced effectively with higher functional levels."
From this perstgx:tive, a neural substrate could
develop into the microscopic knowledge base. The
macroscopic capabilities of intelligence could then
be built on top of this. Given the limitations of
current neural networks, a plausible scheme is to
incorporate capabilities previously found on the
macroscopic, network level into the microscopic,
neuronal (single-neuron) level.

In this connection, we introduce cognitive
single-neuron models that coincide with existing
animal learning theory. Each proposed model pro-
rides a basis for understanding and explaining
Pavlovian conditioning [25][20] and instrumental
conditioning [20], respectively, which are the best
understood animal learning processes. In particular,
one model, an associative critic neuron, captures the
predictive nature of Pavlovian conditioning, which
is essential to the theory of adaptive / learning sys-
tems. Another model, an associative learning neu-
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ron, possesses the associative nature of instrumental
conditioning, which stores in memory the temporal
relationship between input and output.

C. Outline

The problem of learning via credit assignment
[4] is described in Section II. The statement of the

pole-balancing problem follows. This problem may
be viewed as a canonical example of dynamic con-

trol. Some concepts from earlier related work are
given in Section III. They serve as a basis for com-
parison of previous and proposed approaches. The
proposed intelligent system is presented in Section
W. Here, a fuzzy logic-based controller is intro-
duced, and a learning system with cognitive neural

models is proposed. Computer simulation results are
described in Section V. The paper closes with a
concluding remark in Section VI.

II. A CASE STUDY:
THE POLE BALANCING PROBLEM

In machine learning, the problem of learning
to control physical dynamical systems has been, and
remains, a challenging goal. In this context, the
credit-assignment problem is often encountered in
adaptive problem-solving systems, and is especially
acute when evaluative feedback is delayed or infre-
quent. Basically, the credit-assignment problem, is
to determine a strategy for assigning positive credit
(reward) to desirable actions and negative credit
(punishment) to undesirable actions in a way that
would lead to the achievement of a specific goal. In
what follows, we describe an approach to the build-
ing of an intelligent rule-based system that can learn
to control a dynamical system without prior
knowledge of its input-output relations.

Our approach focuses on a paradigmatic con-
trol problem- the pole-balancing problem - which
has been the object of several studies in the litera-
tures of control and neural networks. The pole
balancing system is described as follows. A rigid
pole is hinged to a can, which is free to move on a
one-dimensional track. The pole can rotate in the
vertical plane of the track and the controller can
apply an impulsive force of bounded magnitude to
the can at discrete time intervals. By balancing the
pole, we mean that the pole never deviates by more
than, say, 12 degrees, from the vertical. The equa-
tions of motion of the cart-pole system are not
known to the controller, which implies that the
cart-pole system is treated as a black box. What is

known is a vector describing the cart-pole system's
state at every time step. If the pole falls, it receives
a failure signal. After a failure signal has been
received, the system is reset to its initial state and a
new attempt is made. On the basis of this evaluative
feedback, the controller must develop its own con-
trol strategy and learn to balance the pole for as

long as possible. Since a failure signal usually
occurs only after a long sequence of individual con-

trol decisions, the sparsity of this signal makes the
credit-assignment problem nontrivial.

IlL PREVIOUS RELATED WORK

There are two noteworthy previous studies
which have addressed the pole-balancing problem.
The first is that of Michie and Chambers [21] in

1968. They constructed a program called BOXES
that learned to balance the pole by applying two
opposite constant forces. The second study is that
of Barto, Sutton, and Anderson [1] in 1983, which
used neuronlike adaptive elements to solve the same

problem by using two constant forces. In general,
both approaches can handle the credit-assignment
problem that we mentioned. In both, the slate space

is partitioned into several non-overlapping regions
and no symbolic reasoning techniques are employed.
Both are limited to only two control actions: push-
ing the can left or right with a force of fixed magni-
tude. The problem is thus one of bang-bang control.

In contrast to these approaches, we attempt to
solve the problem through the use of symbolic
problem-solving techniques, employing a fuzzy
rule-based controller with approximate reasoning.
Furthermore, a continuous control scheme is

employed, namely, the controller can apply a force
with a magnitude within [-10,+10] newtons. In this
way, better performance of the controlled system
may be achieved but the complexity of the problem
is increased substantially. An overlapping partition
of the slate space forms a linguistic space. The
overlapping partition enhances the speed of learning
and robustness. We will have more to say about
these issues at a later point.

IV. THE INTELLIGENT CONTROL SYSTEM

Experience shows that a fuzzy logic-based
system using approximate reasoning [16][.!7] make
it possible to emulate and even surpass the
decision-making ability of a skilled human operator.
And, neural network theory [3] provide a new com-
putational structure, a plausible approach for infor-
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mation processing because of its adaptivity / learn-
ing as well as massive parallelism, In this connec-
tion, We developed an intelligent control scheme by
integrating human decision-making and animal
learning behavior employing fuzzy logic and neural
network theory.

._J,,gJ / \ i

-_ _..,_-:.._,_g ....................

Fig. 1. Schematic representation of the intelligent

system,

As shown in Figure 1, one key component of the

intelligent system is a fuzzy logic-based controller
which emulates human decision-making behavior.
Another key component is a neural net. The net is
composed by two cognitive neural models, an asso-
ciative critic neuron (ACN) and an associative learn-
ing neuron (ALN), derived from animal learning
theory, which stimulate memory association and
learning behavior.

human decision-making behavior based on the prin-

ciples of approximate reasoning [35]. The
defuzzifier takes a fuzzy control decision from the
decision-making logic and determines a non-fuzzy
control action (F).

The learning capability of the intelligent sys-
tems is provided by the associative critic neuron
(ACN) and associative learning neuron (ALN).
More specifically, the ACN is derived by using
Pavlovian conditioning theory [25][20]. It captures

the predictive nature of Pavlovian conditioning and

has to do with criticism (_) from the environment

(r) associated with the system state (xl). The ACN
derives from the instrumental conditioning theory
[20]. It is an associative memory system, which

remembers the temporal relationships between input
(xi) and output (F), and associates each fuzzy con-
trol rule with an appropriate fuzzy control action

(F_).

A. Fuzzy Logic Control

In recent years, rule-based controllers employ-
ing approximate reasoning have emerged as one of
the most active areas of research in the applications
of fuzzy set theory. Such reasoning [35] plays an
essential role in the remarkable human ability to
make rational decisions in an environment of uncer-

tainty and imprecision. In essence, approximate rea-
soning is the process or processes by which a possi-

bly imprecise conclusion is deduced from a collec-
tion of imprecise premises. By employing the tech-

niques of fuzzy set theory [34], approximate reason-
ing (with precise reasoning viewed as a limiting
case) can be studied in a formal way.

As a key component of the intelligent con-
troller, the fuzzy logic-based system provides a
linguistic description of control strategy. It is com-
posed by a rule base, a fuzzy decoder, decision-
making logic, and a defuzzifier. In general, the rule
base describes control strategy which has the form
of a collection of fuzzy control rules. For example,
if the angle of the pole is positive large and the
angular velocity is positive large, then the applied
force is positive large. These are implemented and
manipulated using fuzzy set theory [34] and are to
be learnt by the proposed neural net. The fuzzy
decoder inspects the incoming system state and fires
the rules in parallel. A set of firing strength (xi) is

then generated and serves as input for the decision-
making logic and neural net. The decision-making

logic, the inference engine of the system, emulates

The concept of a fuzzy set may be viewed as
an extension of an ordinary (crisp) set. In a fuzzy
set, an element can be a member of the set with a

degree of membership varying between 0 and 1.
Thus, a fuzzy set F in a universe U = {u_,
i=1 ..... n } is defined by its membership function
I.tF : U _ [0,1]. If the IJ.F(ul) are 0 or 1, the fuzzy
set is an ordinary set. As a special case, a fuzzy sin-
gleton is a fuzzy set containing just one element
with degree 1.

A concept which plays an important role in
the applications of the theory of fuzzy sets is that of
a linguistic variables. To illustrate, if speed is inter-
preted as a linguistic variable, that is, a variable
whose values are linguistic labels of fuzzy sets, then
the values of speed might be

T(speed) = {slow, moderate, fast,
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0
40 55 70 speed

Fig. 2. Diagrammatic representation of various
linguistic values of speed.

very slow, more or less fast,.. • }.

In a particular context, slow may be interpreted as,
say, "a speed below about 40 mph", moderate as "a
speed close to 55 mph" and fast as "a speed above
about 70 mph". Figure 2 shows this interpretation in
the framework of fuzzy sets.

The set-theoretic operations on fuzzy sets are

defined via their membership functions. More
specifically, let A and B be two fuzzy sets in U
with membership functions laa and PB, respectively.
The membership function lax,as of the union AuB
is defined pointwise for all u e U by

Pa_(u) = max [pa(u),_tn(u)}.

Dually, the membership function l.ta_ of the inter-
section A _ is defined pointwise for all u e U by

_tac._(u) = rain {pa(u),lan(u)}.

If A1 ..... A. are fuzzy sets in Ux ..... U.,
respectively, the Cartesian product of
A_ ..... A. is a fuzzy set in the product space
U_x • • • xU. with the membership function

_a : . . . ,,a, (u l ,u 2, " • • ,u, ) =

min {I.tal(ul), • ' • .ua.(u.)}.

Assume that the fuzzy sets A, A', B, and B" are
the linguistic values of x and y. An example of
approximate reasoning involving x and y is the fol-
lowing:

premise 1 : x is A',

premise 2: _ x is A then y i_ B,

consequent : y is B',

For instance:

premise 1 : the speed of a car is very high,

premise 2: if the speed of a car is high

then the probabili_ of an accident is high,

consequent: the probability of an accident

is very high.

This type of fuzzy inference is based on the compo-
sitional rule of inference for approximate reasoning
suggested by Zadeh [35].

A rule-based conlroller consists of a set of

fuzzy control rules which are processed through the
use of approximate reasoning. For simplicity, sup-
pose that we have the two rules:

R l: ifxisAlandy isBl then z is C1,

or

R 2 : if x is A 2 and y is B 2 then z is C 2.

Approximate reasoning, given (x is A') and (y is
B'), computes the degree of partial match between
the user-supplied facts and the knowledge rule base
as follows.

The degrees of match of (Ai and A ) and (Bi and B )
are given respectively by

(xi = max min{I.ta,(U), Pa(u)},
u

I]i= max min{I.tn_(v), g-n(v)}.
¥

The filing strength of the ith rule is given by

xi = min{al, [3i}.

Hence, the i _ rule recommends a control decision
as follows:

pc[(W) = min{xi, lac;(W)}.

The consequences of multiple rules can be com-
bined by a conflict-resolution process which treats
the sentence connective or as a union operator. The
combined consequence is then given by

Pc(w) = max{l_c_,Pc_}"

The combinationof consequencesis illustratedin

Figure 3.
In on-line processes, the states of a control

system are essential to a control decision (action).
The underlying data are usually obtained from sen-
sors and are crisp. It may be necessary to convert
these data into the form of fuzzy sets [16]. In prac-
tice, however, crisp data are frequently treated as
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Fig. 3. Diagrammatic representation of approximate
reasoning using fuzzy input.

Ri : if x is Ai and y is B i then z is Ci,

i=1,2 ..... n ,

where x, y, and z are linguistic variables represent-
ing the angle of the pole with respect to the vertical
axis, angular velocity of the pole, and applied force,
respectively; A i, Bi, and Ci are the linguistic values
(fuzzy sets) of the linguistic variables x, y, and z in
their respective universes of discourse, [-12,+12]
degrees, R, and [-10, +I0] newtons. The definitions
of linguistic values A i and B i are shown in Figure 5
(a) and 0a). The problem is to learn the linguistic
values Ci, which take the form of triangles, defined
on the control force universe [-10,+1(3] newtons.

The conception of fuzzification is performed as
shown in Figure 5 (c). The location of the vertex of
such a triangle is to be learned, while the coordi-
nates of the base are functions of the vertex location

value, say in the extreme case, +/-2 newtons away
from that vertex.

fuzzy singletons. In this case, the corresponding
inference mechanism is shown in Figure 4.

........21.......
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Fig. 5. (a) Linguistic values of angle, (b) angular
velocity, and (c) applied force.

Fig. 4. Diagrammatic representation of approximate
reasoning using crisp input.

Furthermore, in on-line control, the inference pro-
cess should lead to a non-fuzzy control action. This
necessitates the use of a defuzzifier. A defuzzifier
can be implemented by using max criterion, mean of
maximum or center of area algorithms [17]. The
defuzzifier used here is employing the center of
area algorithm.

In what follows, the fuzzy control rules are
assumed to be of the form

To summarize the ideas thus far discussed, the

conception of a 2-D linguistic state space is formed.
The x axis is 0 with seven linguistic values; the y
axis is 0 with three linguistic values. Thus, 8x4

fuzzy control rules are involved. Each fuzzy control
rule corresponds to a fuzzy cell. The premise of a
fuzzy control rule determines the cell's coordinates
in the linguistic state space. The consequent of the
rule is taken to be the content of the cell, which is

to be learned by the proposed neurons, the ALN and
ACN. Once a system input is sensed, the cells are
fired in parallel. The fuzzy decoder takes the
current state of the cart-pole system as an input and
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hasn outputs(firingsu'engths)goingto theALN
and ACN. Each output of the fuzzy decoder

corresponds to a fuzzy cell. The activity of the out-
put is the firing strength. The firing strength serves
as an input to both the ALN and ACN, and is also
used to compute the recommended control action in
each rule (cell).

B. Learning with a Neural Net

As has been mentioned in Section II, the prin-

cipal difficulty in the learning process is that the
training information (failure signal) is very sparse.
Many of the previously employed neural networks
such as the Adaline, perceptrons, and Hopfield nets,

are effective for the solution of supervised pattern
classification problems. In contrast, our network
consists of the ACN and ALN which perform unsu-

pervised learning. The ACN has to do with the cri-
ticism from the environment associated with the sys-
tem state. The ALN takes the criticism and associ-

ates n fuzzy control actions with n fuzzy cells (the
consequents of n fuzzy control rules). Since the
ACN predicts the criticism at every time step, the
ALN can continuously update itself before the

failure signal occurs. This is the basis for the solu-
tion of the credit-assignment problem.

I. ACN

The ACN is derived from Pavlovian condi-

tioning theory [25] [20]. The best known example of
Pavlovian conditioning comes from Pavlov's
research on the conditioned reflex of salivation by
dogs. Prior to conditioning, when a dog hears the
sound of a bell, it pricks its ears. Then, when the
food is presented to it, it salivates. If this sequence
of events is repeated, the dog soon starts to salivate
in reaction to the sound of the bell. In effect, the

dog has been "conditioned" to react to the bell. As
can be seen, the sound of a bell can be used to

predict the occurrence of salivation before the pres-
ence of food. This predictive relationship between
food and the sound of a bell has important implica-

tions. Thus, the ACN captures this predictive nature
of the Pavlovian conditioning.

The correspondence between Pavlovian condi-
tioning and the behavior of our system is as follows.
Food corresponds to the evaluative feedback (failure
signal). The salivation by reflex is equivalent to an
external reinforcement r(t) with the value -1.0 if
failure signal occurs, otherwise 0.0. The sound of a
bell relates to the i at fired fuzzy cell (fuzzy control

rule) with firing strength xi. The salivation resulting
from the bell's sound is the predictive reinforcement

Vi(t ) of the i _ fuzzy cell. It is worth noting that, in
the extreme, the i th rule with firing strength either
1.0 or 0.0 is the exact case of presence or absence
of a bell's sound in the conditioning of a Parlor

dog. In other words, our ACN operates in a continu-
ous mode, which treats Pavlovian conditioning as a

special case. In effect, the ACN attempts to predict
the reinforcement vi(t) that can eventually be
obtained from the environment by choosing a con-
trol action for that fuzzy cell.

As an extension of single-input/single-output

analogy, multiple inputs in the ACN necessitate an
output which is a weighted sum of the predictive
reinforcements of all fired fuzzy ceils. The
weighted sum p(t) is the total reinforcement of all
fired fuzzy cells at time t. Furthermore, an internal

reinforcement '_(t), the criticism, is generated as a

temporal difference of the total predictive reinforce-
ments.

As shown in Figure 1, the ACN has im exter-

nal reinforcement input, r (t), from the cart-pole sys-
tem, n inputs, xi(t), i=1 ..... n, from corresponding

fuzzy cells, and an output, '_(t), as internal rein-
forcement signal (criticism) for the ALN and itself.
The total reinforcement at time t is given by

p (t) = G (_vi (t)xi (:)),
i=l

where G could be a sigmoid-shaped function, iden-
tit,/function, mean of maximum algorithm or center
of area algorithm. The associative learning rule for
the i a_ fuzzy cell is in part characterized by a local
memory trace _/(t) and the internal reinforcement

'_(t). The predictive reinforcement vi(t) of the i at

fuzzy cell (fuzzy control rule, fuzzy system state) is
updated by

vi(t+l) = vi(t) + _J'r(t)_ii(t),

where _ is a positive learning-rate parameter. The
local memory trace is defined by

_i(t+l) = _(t) + (1-Z) lxi(t)vi(t)l,

where 7t, 0 < _ <1, is a trace-delay parameter. The
trace takes the form of an exponential curve. It is
'strengthened by the degree of firing strength of the
i _ fuzzy cell (fuzzy control rule) together with its
current weight, and weakened if the rule is not tired.
The trace thus keeps track of how long ago the i n_
fuzzy control rule fired and also how often it was
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fired. The internal reinforcement is calculated as

"_(t) = r(t) + Tp(t) - p(t-1),

where _,, 0 _<_,<1, is a discount-rate parameter. The
internal reinforcement serves as criticism, depending

on a relative difference of p(O and p(t-1). If the
pole does not fall and TP(t )>p (t-1), then r(t)=O

and _(t)>0, a reward is given. If the pole does not

fall and Tp(t)<p(t-1), then r(t)--'O and _(t)<0, and

a punishment is effected. The discount factor _,
implies a bias for the condition in which p (t) equals
p(t-1). More specifically, once the pole does not
fall and keeps in the same state, a reward is given
through the use of a discount factor. On the other
hand, if the pole falls, then p(t)=0, r(t)=-I and

"_(t)<0, and a punishment is issued. If p(t-1) fully

predicts the occurrence of the failure, there is no
punishment. As shown, a negative feedback
mechanism is implicitly incorporated into the inter-
nal reinforcement.

The proposed ACN model might be viewed as
an extension of the Sutton-Barto model [18]. More

specifically, in the context of animal learning
phenomena, a sigmoid-shaped acquisition curve is
observed. This is not simulated in the Sutton-Barto

model. In our model, it can be achieved by making
a change in the associative strength proportional to
the current associative strength [18]. It has been
demonstrated by computer simulation that the ACN
accounts for many phenomena observed in Pavlo-
vian conditioning, such as a sigmoid-shaped acquisi-
tion curve, inter-stimulus interval effects, trace con-
ditioning, and delay conditioning. A more detailed
discussion of this aspect of our model is described
elsewhere [18].

2. ALN

The ALN is derived from the instrumental

conditioning theory [20]. A simple example is
teaching a dog to perform a trick. During training, if
the dog does well, it is given a reward. If not, it is
punished. After training, the dog has learned a new
trick. The association of the dog's response and
reinforcement has in effect been "conditioned". The

correspondence between this conditioning and the
ALN is as follows. A dog corresponds to the i th

fuzzy control rule with firing strength xi. The

response of the dog relates to the control force
(wiJi) of the i th rule. The reinforcement as
reward/punishment is equivalent to the internal rein-
forcement from the ACN. The ALN does the fol-

lowing: the i _ fuzzy control rule can produce
correct control force of the i _ rule under the inter-
hal reinforcement from the ACN. In effect, the

ALN is a content-addressable memory system which
associates each fuzzy control rule with an appropri-
ate fuzzy control action.

As shown in Figure 1, the ALN has an inter-

hal reinforcement input, '_(t), from the ACN, n

inputs, xi(t), i=1 ..... n, from the fuzzy decoder, a
control action input, F(t), from the defuzzifer, and
n associative weights w_ i=1 ..... n, as outputs for
the rule base. Each associative weight wi(t) is
transformed -- by using the concepts of dynamical
normalization and fuzzification -- into a fuzzy set

having the form of a triangle as described in the
previous section. Symbolically,

Fi (t) = fuzzifier (f i (t)),

where f,. (t) is the location of the vertex of the trian-
gle. It is given by

fi(t) = H(wi(t) + noise(t)), i = 1..... n ,

where H is a dynamic sigmoid function which may
be viewed as a dynamic normalization function and
provides a continuous output within the range [-
10,+10]. For the purpose of computer simulation,
the following function is used:

10x

T (t )+x

H(x_) = E

10x

T(t)--x

where T(t) = klmax Iw/(t)l is
!

parameter which determines the slope of
sigmoid-shaped curve; and k l is a constant.
associative learning rule for each wi (t) is

where

x>0,

x=0,

x<0.

an offset-tuning

the
The

wi(t+l)= wi(t)+ _(t)'_(t)ei(t),

c_2

_(t) = k2 +t'

i_ is a dynamical positive learning-rate
parameter with a initial value ct and k2 is a weight-
freeze parameter. The weight-freeze parameter
determines the decreasing rate of the dynamical

learning rate _. "_(t) is the criticism from the ACN.
The associativity trace, ei (t), is given by

ei(t + l) = 8ei(t ) + (1-5)F (t )xi (t ),

where 8, 0 < 8 <1, is another trace-decay parameter.
The associativity trace takes the form of an
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exponential and it remembers for how long and how
often a fuzzy control rule has fired as well as what
control action was taken at that time.

@
'_ iO
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Fig. 6. Signal flow of the intelligent control system.

Figure 6 illustrates the signal flow of our pro-
posed controller during a learning process. In prin-
ciple, once a system state is sensed, the set of fuzzy
control rules is fired in parallel. A set of firing
strengths (x_) is then generated and serves as input
to both ALN and ACN. The information about the
system state is then fed into the two neuronlike ele-
ments by the set of firing strengths. The firing
strength together with the predictive reinforcement
(vi, or desirability) of the i _ fuzzy rule generates
the local memory trace (_, desirability trace) of the
i th fuzzy rule. The total reinforcement, p, or
equivalently, the desirability of all fired fuzzy cells,
is computed based on the firing strength and the
reinforcement (desirability) of each fuzzy rule. A
non-fuzzy control action, F, is determined after the
processes of inference combining and
defuzzitication. The control action, F, together with
the firing strength, x_, of each rule contributes the
associativity trace, el, of each rule. After applying
the control action to the plant, a goal evaluation, r,
is made, which takes binary values. Based on the

yes-no evaluation, the criticishl, '_, which is a more

informative evaluation, is generated. It plays an
important role in the solution of the credit-
assignment problem. The weights (vi, wi) in learn-
ing rules are thus updated on the basis of the criti-
cism and their own local memory trace, (_, ei). A

m)

fuzzy control force in each rule is generated from
the w_ by the use of dynamic normalization and
fuzzification.

V. SIMULATION RESULTS

We implemented our system on a Sun works-
tation. For comparison purposes, we also imple-
mented Barto's system [1] for solving the same

problem. The mass of the cart and initial pole were
1.0 kg and 0.1 kg, respectively. The length of the
pole was 1.0 meter. The parameter values used in
our simulation were: o.=1000, 13=0.5, 7=0.95, 5=0.9,
k=0.8, e=0.1, k]=0.15, and kz=2500. A run was
called "success" whenever the number of steps
before failure was greater than 60,000. The external
reinforcement r(t) was -1 when the failure signal

occurred, otherwise, it was 0. Every _al began
with the same initial cart-pole states, if=0, 0=0, x =0,
:_=0, and ended with a failure signal when 101>12
degrees. All memory traces, x_ and ei, were set to
zero. All the weights, w_; were set to zero, and a
lower bound vi (=-0.0001) was set to all the
weights. In testing the performance of the system,
the simulator was run by applying the Adams

predictor-corrector method with a time step of 20
ms [19].
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Fig. 7. Learned control surface based on the pro-
posed intelligent system with COA defuzzifier.

A. Learning / Training

The proposed controller and Barto's system
are capable of learning to balance the P01e. How-
ever, experiments show that our system has a better
learning performance [19]. The proposed controller
learns to balance the pole by 6 trials with COA
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defuzzifier. Figure 7 illustrates the learned control
surfaces based on our intelligent system employing
defuzzifier center of area(COA). The performance
of Barto system, in average, took 27 trials to bal-
ance the pole [19].

Additional observations were made on the

state trajectory of the angle of the pole with respect
to the vertical axis. We observed the data after the

systems learned their own control strategy. The data
showed that, in every case, our controller could
keep the angle within a smaller region compared
with Barto's. Figure 8 illustrates one set of these
data from our system and Barto's, respectively.

ores
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Fig. 8. (a) State performance of the pole angle based
on the proposed controller. (b) State perfor-
mance o_"the pole angle based on Barto's sys-
tem.

B. Adaptation

Adaptation is intended to adjust to unforeseen
changes in environmental conditions using prior
knowledge. Training involves constructing a
knowledge base of an application domain (e.g. a
pole-balancing task) with little a priori domain
knowledge. The capability of learning to solve new
tasks by modifying previous learned knowledge
(adaptation) is compared with that of starting from
scratch (training). Extensive simulation studies of
such schemes have been carried out. They show that
the proposed controller tolerates a wide range of
uncertainty as well as a lack of system information,
e.g., parameter changes in the length and mass of
the pole, changes of failure criteria, and a slanted
cart-pole system.

The adaptation experiments were based on
pre-learned knowledge by employing the same
parameter settings as that in the last section. The
length and mass of the pole were 0.1kg and 1.0m,
the angle consuaint for failure evaluation was
-/+12 °. and the initial value of the angle of the pole
with respect to the vertical axis is 0.0 °. The system
took 6 trials to learn the task.

In the first set of experiments, the system is
required to adapt to changes in the length and mass
of the pole. Six experiments were performed. The
first two were to increase the original mass of the
pole by a factor of 10 and 20, respectively. The
third and fourth ones were to change the original
length of the pole by a factor of 2 and 1/2, respec-
tively. The last two were to replace the original
pole by two shorter poles. The length and mass of
the first pole were reduced to 2/3 of the original
values, while the second one is 1/4. Without pre-
training, the system took 10, 15, 5, 11, 8 and 6 trials
to learn these tasks. However, with the pre-trained
knowledge, the system successfully completed these
tasks without any further trials. The result shows
the robustness of the proposed intelligent system.

In the second set, we added a more severe

constraint on the angle of the pole for failure
evaluation. The angle constraints were changed from
+/-12 ° to +/-6 °, +/-3 °, and to +/-1 °, respectively.
The system needed 4 and 6 trials to learn the first
two tasks with no initial knowledge, but it failed in
the last task since a finer partition of input space is
required. While with pre-training, the system
adapted to all tasks without further trials.

In the third set, the system was required to
adapt to the changes in the length and mass of the
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pole (by a factor of 1/2) and angle constraint
(+/-3°). The training took 6 trials, while adaptation
can handle the new task well.

Finally, the cart-pole system was lifted at the
right end in such a way that the base of the system
and the surface of the table formed an angle of 12°.

The system took 10 trials to balance the pole. How-
ever, the system with the trained knowledge needed
no further trials tO complete the new task.

VI. CONCLUDING REMARK

In this article, we have proposed a symbolic

problem-solving approach to a class of learning con-
trol problems. More specifically, we have attempted
to develop an intelligent control scheme by integrat-
ing human decision-making with a fuzzy logic-based

system and animal learning behavior with cognitive
neural models. The proposed intelligent control sys-
tem learns and improves its rule base for better con-
trol strategy from experience and adapts to changes
in an environment of uncertainty and imprecision. In

this way, we avoid an ad-hoc rule-tuning process
which is usually inefficient and lacking in con-

sistency. It has been shown that the proposed intelli-
gent system has a better performance of learning
speed and system behavior in relation to previous
approaches. Furthermore, the system is quite robust.
The controller is relatively insensitive to variations

in the parameters of the system environment, e.g., in
the context of pole-balancing, changes in the length
and mass of the pole, failure criteria, and slanting
the base of the cart-pole system. In addition, the
controller can be primed with pre-trained control

knowledge which minimizes rapid changes during
adaptation.

The approach described in this paper may be
viewed as a step in the development of a better
understanding of how to combine a fuzzy logic
based system with a neural network to achieve a
significant learning capability. We plan to address
various aspects of this important issd¢ in subsequent

papers.
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INTRODUCTION

A gray tone picture possesses some ambiguity within the pixels due to the
possible multivalued levels of brighmess. The incertitude in an image may arise
from grayness ambiguity or spatial (geometrical) ambiguity or both. Grayness
ambiguity means "indef'miteness"in deciding a pix¢l as white or black. Spatial
ambiguity refers to "indef'miteness" in shape and geometry of a region e.g., where is
the boundary or edge of a region? or is this contour "sharp"?

When the regions in a image are ill-defined (fuzzy), it is natural and also
appropriate to avoid committing ourselves to a specific (hard) decision e.g.,
segmentation/thresholding and skeietonization by allowing the segments or skeletons
or contours, to be fuzzy subsets of the image. Similarly, for describing and
interpreting ill-defined structural information in a pattern (when the pattern in-
determinary is due to inherent vagueness rather than randomness), it is natural to
define primitives and relation among them using labels of fuzzy set.

The present article provides various uncertainty measures arising from grayness
ambiguity and spatial ambiguity in an image, and their possible applications as
image information measures. The f'trstpart of the article consists of definitions of an
image in the light of fuzzy set theory, and of information measures (arising from
fuzziness) and tools relevant for processing/analysis e.g., fuzzy geometrical
properties, correlation, bound functions and entropy measures. The second part
provides formulation of algorithms along with management of uncertainties
(ambiguities) for segmentation and object extraction, and edge detection. The output
obtained here is both fuzzy and nonfuzzy. Ambiguity in evaluation and assessment of
membership function has also been described here.

Dr. Pal is on leave from the post of Professor in the Electronics and
Communication Sciences Unit, Indian Statistical Institute, Calcutta 700035,
India.
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Fuzzy Geometry, Entropy and Image information

IMAGE DEFINITION

An image X of size MxN and L levels can be considered as an array of fuzzy
singletons, each having a value of membership denoting its degree of brightness
relative to some brightness level l, t = 0, 1, 2.... L - 1. In the notation of fuzzy
sets, we may therefore write

{Bx(Xmn)= Ixmn/Xrnn; m = 1, 2 . . . M; n = 1, 2 .... N} (1)X=

where Ixx(Xm)or Ixm/xm, (0 _ Ixm_ -< 1)

denotes the grade of possessing some property Bran (e.g., brightness, edginess,

smoothness) by the (m,n)th pixel intensity Xmn. In other words, a fuzzy subset of

an image X is a mapping Ixfrom X into [0, 1]. For any point p e X, B(P) is

called the degree of membership of p in Ix.
One may use either global or local information of an image in defining a

membership function characterizing some property. For example, brightness or
darkness property can be defined only in terms of gray value of a pixel Xmnwhereas,

edginess, darkness or textural property need the neighborhood information of a pixel
to define their membership functions. Similarly, positional or co-ordinate
information is necessary, in addition to gray level and neighborhood information to
characterize a dynamic property of an image.

Again, the aforesaid information can be used in a number of ways (in their
various functional forms), depending on individuals opinion and/or the problem to
his hand, to define a requisite membership function for an image property.

MEASURES OF FUZZINESS AND IMAGE
INFORMATION

The definitions of various entropy and other related measuw_ which represent
grayness ambiguity in an image (based on individual pixel as well as a collection of
pixels) are listed below.

Linear Index of Fuzziness

(x) = (21MN)ZZIIXm.- mnl C2)mn

= (2/MN)E E min(ixnm, l-Brnn)
m n

m= 1,2 .... M;n= 1,2 .... N

Quadratic Index of Fuzziness

,-- (3)

m = 1,2 .... M;n= 1,2 .... N
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Entropy

H(X) = (1]MN In 2)Y.XSn(lamn )
mn

with Sn([tmn) ="ttmn In"m" (1- lamn ) ln(1 - I_mn )

m = 1,2 .... M;n = 1,2 .... N

[tmn denotes the degree of possessing some property _tby the (m, n)th pixel

Xmn. _nm denotes the nearest two tone version of ttmn

0)

rth Order Entropy

Hr (X)= (" 1/k)_{B(s_)l°g{B(si_)} + {1" B(si¥)} l°g{1" Ix(siT1})(5)

i= 1,2 .... k

Y

s i denotes the ith combination (sequence) of r pixels in X. k is the number of such

[

sequences. B(s r) denotes the degree to which the combination s i , as a whole,

possesses the property B.

Hybrid Entropy

Hhy(X)= -Pw logEw - Pb IogEb (6)

with xx  mneXp(1--.m)
ms

Eb =(1]MN) XX(1-Bmn)exp(_tmn)
mn

m= 1,2 .... M;n= 1,2 .... N

lamn denotes the degree of "whiteness" of (m, n)th pixel. Pw and Pb denote

probability of occurrences of white (I.tmn= 1) and black 0into = 0) pixels respectively.

Ew and Eb denotetheaveragelikeliness(possibility)of interpretinga pixelaswhite

and black respectively.

Correlation

COA1,

C(B1,

with Xl =

and X2 =

B2)= 1 ifX 1 +X2=0

ZZ{2P.lmn - 1}2
mn

xx{2 2m-1} 2
mn

+x2)

m = 1, 2,...M;n = 1, 2 .... N

O)
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C_I, I.t2 ) denotes the correlation between two properties I.t1 and ia2 (defmed

over the same domain). I.tlm n and _2mn denote the degree of possessing the

properties IJ.1 and ia2 respectively by the (m, n)th pixel.

These expressions (equations 2-7) are the versions extended to two dimensional
image plane from those def'med for a fuzzy seL For example, index of fuzziness was
defined by Kaufmann [1], entropy by DeLuca and Termini [2], rth order entropy and
hybrid entropy by Pal and Pal [3], and correlation by Murthy, Pal and Dutta
Majurndar [4].

Interpretation

Let us describe the properties of these measures along with their relevance to
image processing/analysis problems. Index of fuzziness reflects the ambiguity

present in an image by measuring the distance between its fuzzy property plane and
the nearest ordinary plane. The term "entropy", on the other hand, uses Shannon's
function in the property plane but its meaning is quite different from the one of

classical entropy because no probabilistic concept is needed to define it. Hr(x) gives a
measure of the average amount of difficulty in taking a decision on any subset of size

r with respect to an image property. If r = 1, Hr(x) reduces to (unnormalized) H(X)
of equation (4). Equation (5) is formulated based on the logarithmic behavior of gain
function. Similar expression using exponential gain function [14] can also be

defined. Hhy (X) represents an amount of difficulty in deciding whether a pixel

possesses certain properties or not by making a prevision on its probability of

occurrence. In absence of fuzziness (i.e.,with proper defuzzification), Hhy reduces to
two state classical entropy of Shannon, the states being black and white. Since a
fuzzy set is a generalized version of an ordinary set, the entropy of a fuzzy set

deserves to be a generalized version of classical entropy by taking into account not
only the fuzziness of the set but also the underlying probability structure. In that

respect, Hhy can be regarded as a generalized entropy such that classical entropy

becomes its special case when fuzziness is properly removed.

All these terms, which give an idea of 'indefiniteness' or fuzziness of an image
may be regarded as the measures of average intrinsic information which is received
when one has to make a decision (as in pattern analysis) in order to classify the
ensembles of patterns described by a fuzzy set.

T(X) and H(X) are normalized in the interval [0, 1] such that

Prl: Ymin = Hmin =0 for _trnn =0 forall (m,n)(X) (8a)

Pr2: Ymax = Hmax =1 for lamn =0.5 for all (m,n) (8b)

> H(X)>H(X*)) (8¢)

amd Pr 4: yCX) = 7(X)(or, HCX)2 H(X)) (8(1)

where X* is the 'sharpened' or 'intensified' version of X such that
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gx*(Xnm)>_gx(Xnm) if gx(Xnm)->0.5

and gx,(Xmn)- < Stx(Xnm)ifgx(Xmn)-<0.5 (9)

In other words, _/(X) or H(X) increases monotonically with St, reaches a

maximum at Ix= 0.5 and then decreases monotonically. This is explained in Fig. 1.
It is to be mentioned here that the definition of ft!zzy entropy [14,16] based on
exponential gain function also satisfies the aforesaid properties.

1

0 0.5 1

St

Figure 1 Variation of Fuzziness with St.

According to property 8(c), these parametersdecrease with contrast enhancement
of an image. Now through processing, if we can partially remove the uncertainty on
the grey levels of X, we say that we have obtained an average amount of information

given by _, = ,/(X)- "y(X *) or 81-1= H(X) - H(X *) by taking a decision bright or

dark on the pixels of X. The criteria _/(X *) < _,(X) and H(X *) < H(X), in order to

have positive _ and 8H-values, follow from Eq. (8c). If the uncertainty is

completely removed, then "y(X *) = H(X *) = 0. In other words, _/(X) and H(X) can

be regarded as measures of the average amount of information (about the grey levels
of pixels) which has been lost by transforming the classical pattern (two-tone) into a
fuzzy pattern X.

It is to be noted that _(X) or H(X) reduces to zero as long as grnn is made 0 or 1

for all (m, n), no matter whether the resulting defuzzification (or transforming

process) is correct or not. In the following discussion it will be clear how Hhy,
takes care of this situation.

Hr(x) has the following properties:

Pr 1: Hr attains a maximum if Sti= 0.5 for all i.

Pr 2: Hr attains a minimum if Sti = 0 or 1 for all i.

Pr 3: Hr > H *r , where H*r is the rth order entropy of a sharpened version
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of the fuzzy set.

Pr 4: H r is, in general, not equal to Mr , where Mr is the rth order entropy

of the complement set.

Pr 5: Hr < Hr+l when all _ti _ [0.5, 1].

H r > H r+l when all il i E [0, 0.5].

Note that the property P4 of equation 8(d) is not, in general, valid here. The

additional property Pr 5 implies that Hr is a monotonically noninereasing function

ofr for Ixi _ [0, 0.5] and a monotonically nondecreasing function ofr for

Ili _ [0. 5, 1] (when 'min' operator has been used to get the group membership
value).

When all the Ixi values are same, HI(x) = H2(X) = . . . = Hr(x). This is

because of the fact that the difficulty in taking a decision regarding possession of a
property on an individual is same as that of a group selected therefrom. The value of

H r would, of course, be dependent on the ixi values.

Again, the higher the simlarity among singletons the quicker is the convergence
to the limiting value of Hr. Based on this observation, let us def'me an index of

similarity of supports of a fuzzy set as S = H1/I-I2 (when H 2 = 0, H 1 is also zero and

S is taken as 1). Obviously, when I.ti e [0.5, 1] and the min operator is used to

assign the degree of possession of the property by a collection of supports, S will lie

in [0, 1] as Hr < Hr+l. Similarly, when _ti e [0, 0.5] S may he defined as H2/I-I1

so that S lies in [0, 1]. Higher the value of S the more alike (similar) are the
supports of the fuzzy set with respect to the property P. This index of similarity can
therefore be regarded as a measure of the degree to which the members of a fuzzy set
are alike.

Therefore, the value of conventional fuzzy entropy (H I orEq. 4) can only
indicate whether the fuzziness in a set is low or high. In addition to this, the value

of Hr also enables one to infer whether the fuzzy set contains similar supports (or
elements) or not. The similarity index thus defined can be successfully used for
measuring interclass and intraclass ambiguity (i.e., class homogeneity and contrast)
in pattern recognition and image processing problems.

The aforesaid features are explained in Table 1 when I.ti _ [0.5, 1], min operator

is used to compute group membership and k in Eq. 5 is considered to be

10Cr ,r = 1, 2.... 6.

Hhy(X) has the following properties. In the absence of fuzziness when MNP b

pixels become completely black (lamn = 0) and MNP w pixels become completely

white (I.tmn = 1) then Ew= Pw' Eb= Pb and Hhy boils down to two state classical
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entropy

Hc = -Pw log Pw - Pb log lab,

the states being black and white. Thus, Hhy reduces to H c only when a proper

(10)

Table 1: Higher Order Entrop£

Case g_ H1 H2 I-I3 H4 1-I5 H6 S

I {I,I,I,I,I,I,I,I,I,I} 0 0 0 0 0 0 I

2 {.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5}I I I I 1 I I

3 {I,1,I,1,1,.5,.5,.5,.5,.5} .5 .777 .916 .976 .996 I .642

4 {.5,.5,.5,.5,.5,.6,.6,.6,.6,.6}.980 .991 .996 .999 .999 I .989

5 {.6,.6,.65,.9,.9,.9,.9,.9,.9,.915}.538 .678 ,781 .855 .905 .937 .793

6 {.8,.8,.8,.8,.8,.8,.9,.9,.9,.9}.538 .613 .641 .649 .650 .650 .878

7 {.5,.5,.5,.5,.5,.5,.9,.9,.9,.9} .748 .916 .979 .997 1 1 .816

8 (.7,.7,.7,.7,.7,.8,.8r8,.8r.81 .748 .802 .830 .841 .845 _846 .932

I I

defuzzification proce.ss is applied to detect (restore) the pixels. ]Hhy - Hc I can

therefore be acted as an objective function for enhancement and noise reduction. The

lower the difference, the lesser is the fuzziness associated with the individual symbol
and higher will be the accuracy in classifying them as their original value (white or

black). (This property was lacking with y(X) and H(X) measures (equations 2-4)

which always reduce to zero irrespective of the defuzzification process). In other

words, [Hhy- Irepresents an amount of information which was lost by

transforming a two tone image to a gray tone.

For a given P and Pb (Pw + Pb = 1, 0 -<Pw,lab < 1), of all possible defuzzified

versions, Hhy is minimum for the one with properly defuzzified.

If l.tmn = 0.5 for all (m, n) then Ew=E b

and Hhy = -log(0.5exp0.5) (11)

i.e., Hhy takes a constant value and becomes independent of Pw and Pb" This is

logical in the sense that the machine is unable to take decision on the pixels since all

grim values are 0.5.

Let us consider an example of a digital image in which, say, 70% pixels look

white, while the remaining 30% look dark. Thus the probability of a white pixel Pw

is 0.7 and that of a dark pixel Pb is 0.3. Suppose, the whiteness of the pixels is not

constant, i.e., there is a variation (grayness) and similar is the case with the black
pixels.

Let us now consider the effect of improper defuzzifw.ation on the pattern shown
in case 1 of the Table 2. Two types of defuzzifications are considered here. In cases

2-4 all the symbols with la = 0.5 are transformed to zero when some of them were
actually generated from symbol T. In cases 5-6 of Table 2 some of the _t values
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greater than 0.5 which were generated from symbol 1 (or belong to the white portion
of the image) are wrongly clefuzzified and brought down towards zero (instead of 1).

In both situations, it is to be noted that IH - Hhy I does no( reduce to zero. The case

7, on the other hand, has all its elements properly defuzzified. As a result, E 1 and E0

b0come 0.3 and 0.7 respectively and !IHhy - Hell reduces to zero.

Table 2: Effect of wrong defuzzification(with pQ = 0.3 and p_ = 0.7)

Case gX E1 E9 H hy I H....- H hy ]

1 {.9,.9,.8,.8,.7,.6,.5,.5,.4,.3 } .620 .876 .235 .375

2 {.999,.999,.9,.8,.7,.7,.3,.3,.2,. 1} .576 .776 .342 .268

3 {1,1,1,.99,.9,.9,. 1,. 1,0,0} .450 .648 .542 .068

4 { 1,1,1,1,1,1,0,0,0,0} .400 .600 .632 .021

5 {.99,.99,. 1,. 1,.9,.8,.7,.2,. 1,. 1 } .630 .634 .456 .154

6 { 1,1,0,0,1,1,1,0,0,0} .500 .500 .693 .082

7 { 1,1,1,1,1,1,1,0,0,0} .300 .700 .611 0
11 I I

There had been some attempts [2, 15] to combine probabilistic entropy and
possibilistic entropy, they failed to have the aforesaid property of the effect of wrong
defuzzification. The details of classical entropy measures (e.g., higher order,
conditional and positional) of an image are available in [14, 16].

C(g 1, IL2) of equation (7) has the following properties.

a) If for higher values of gl(X), I.t2(X) takes higher values and the converse is

also true then C(111, g2) must be very high.

b) If with increase of x, both 111and g2 increase then C(tt 1, p2) > 0.

c) If with increase of x, 111 increases and Iz2 decreases or vice versa then

C_ 1, 112) < O.

d) C(111, l.tl) = 1

e) C(111, p.1) > COIl, [1.2)

f) C(Ja I , 1-I.tl)=-1

g) C(11 I, 112) = Cfla 2, gl )

h) -1 -< C(g I, 112) <1

i) COxl, g2) = -C(1-I.tl, 112)

J) C_ 1, Ix2) = C(1-111, 1-g 2)
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IMAGE GEOMETRY

The various geometrical properties of a fuzzy in_ge subset (characterized by

Ixx(Xmn) or simply by IX)as det'medby Rosenfeld [5,6] and Pal and Ghosh [7] are
given below with illustration. These provide measures of ambiguity in geometry
(spatial domain) of an image.

Area The area of a fuzzy subset Ix is defined as [5]

a(Ix)= IIx (12)
where the integration is taken over a region outside which la,--0. For Ixbeing
piecewise constant (in case of digital image) the area is

a(ix) = EIX (13)

where the summation is over a region outside which IX=0. Note from equation (13)
that area is the weighted sum of the regions on which Ixhas constant value weighted
by these values.

Example 1 Let Ix be of the form
0.2 0.4 0.3
0.2 0.7 0.6
0.6 0.5 0.6

Area a(lx) = (0.2+0.4+0.3+0.2+0.7+0.6+0.6+0.5+0.6) = 4.1

Perimeter If Ix is piecewise constant, the perimeter of Ix is defined as [5]

p(ix)= Y_ IIx(i)-ix(j_*lA(i, j, k_
i, j, k (14)

This is just the weighted sum of the lengths of the ares A(i, j, k) along which the
regions having constant Ix values Ix(i)and IX(j)meet, weighted by the absolute
difference of these values. In case of an. image if we consider the pixels as the
piecewise constant regions, and the common arc length for adjacent pixels as unity
then the perimeter of an image is defined by

p(ix)=Z IIx(i)-ix(j 
i,j (15)

where Ix(i) and IX(j)are the membership values of two adjacent pixels.
For the fuzzy subset Ix of example i, perimeter is

p(Ix) = 10.2- 0.41 +10.2- 0.21+ 10.4- 0._ +10.4- 0Aq
+10.3 - 0.61 + 10.2 - 0.61 + 10.2 - 0.71 + 10.7 - 0.61
+10.7-0.51+10.6-0.61+10.6-0.51+10.5-o.6t
--2.3

Compactness The compactness of a fuzzy set Ixhaving an area of a _) and a
perimeter of p_) is defined as [5]

_ a(Ix)
comp(Ix) -

(P(.))- (16)

/
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Physically, compactness means the fraction of maximum area (that can be encircled
by the perimeter) actually occupied by the object. In non fuzzy case the value of

compactness is maximum for a circle and is equal to n / 4. In case of fuzzy disc,
where the membership value is only dependent on its distance from the center, this

compactness value is > _ / 4 [6]. Of all possible fuzzy discs compactness is

therefore minimum for its crisp version.
For the fuzzy subset IXof example 1, comp(ix) = 4.1/(2.3.2.3) = 0.775.

Height and Width The height of a fuzzy set Ix is defined as [51

h(ix)=lma ixr d 
m [17]

wheretheintegrationistakenoveraregionoutsidewhichIxmn= 0.

Similarly,thewidthofthefuzzysetisdefinedby

w(ix)= Imax_tmdm
n (18)

with the same condition over integration as above. For digital pictures m and n can
take only discrete values, and since g = 0 outside the bounded region, the max
operators are taken over a finite set. In this case the definitions take the form

hCix)= E max Ixinn
n m (19)

and w(ix)=Z max Ixmnm n (20)

In= 1,2....M; n---1,2....N
So physically,incaseofadigitalpicture,heightisthesum ofthemaximum

membershipvaluesofeachrow. Similarly,by widthwe mean thesum ofthe
maximum membershipvaluesofeachcolumn.

ForthefuzzysubsetIXofexampleI,heightish_) = 0.4+0.7+0.6= 1.7and
widthisw_) --0.6+0.7+0.6= 1.9.

Length and Breadth The length of a fuzzy set Ix is defined as [7]

l(g)= max (Jgmndn) (21)
in

where the integration is taken over the region outside which Ixinn= O. In case of a

digital picture where m and n can take only discrete values the expression takes the
form

in (22)

Physicallyspeaking,thelengthofanimagefuzzysubsetgivesitslongestexpansion

inthecolumndirection.IfIxiscrisp,Ixnm= 0 orI;inthiscaselengthisthe

maximum numberofpixelsinacolumn.Comparingequation(22)with(19)we
noticethatthelengthisdifferentfromheightinthesense,theformertakesthe
summationoftheentriesinacolumnfirstand thenmaximizesoverdifferent

columns whereas, the later maximizes the entries in a column and then sums over
different columns.
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The breadth of a fuzzy set IXis defined as

b(ix) = max (_ Ixmndm) (23)
II

where the integration is taken over the region outside which Ixmn = 0. In case of a

digital picture the expression takes the form

Physically speaking, the breadth of an image fuzzy subset gives its longest

expansion in the row direction. If IXis crisp, Bn_ = 0 or 1; in this case breadth is

the maximum number of pixels in a row. The difference between width and breadth
is same as that between height and length.

For the fuzzy subset IXin example 1, length is l(g) = 0.4 + 0.7 + 0.5 = 1.6 and

breadth is b(g) = 0.6 + 0.5 + 0.6 = 1.7.

Index of Area Coverage The index of area coverage of a fuzzy set may be
defined as [7]

IOAC(IX) = area(B)
1(B)*bCB)

In nonfuzzy case, the IOAC has value of 1 for a rectangle (`placed along the axes of

measurement). For a circle this value is _r 2 / (2r* 2r) = _ / 4. Physically by

IOAC of a fuzzy image we mean the fraction (which may be improper also) of the
maximum area (that can be covered by the length and breadth of the image) actually

covered by the image.
For the fuzzy subset Ix of example 1, the maximum area that can be covered by

its length and breadth is 1.6" 1.7 = 2.72 whereas, the actual area is 4.1, so the IOAC
= 4.1 / 2.72 = 1.51.

It is to be noted that 1 (X)/h (X) -< 1 (26)
b (X)/w (X) -<1 (27)

When equality holds for (26) or (27) the object is either vertically or horizontally
oriented.

Degree of Adjacency The degree to which two regions S and T of an image are
adjacent is defined as

1 1
a(S,T) = _ *

peBP(S) 1 + b(p)-r(q)l l+d(p) (28)

Here d(,p) is the shortest distance between p and q, q is a border pixel (BP) of T and p
is a border pixel of S. The other symbols are having their same meaning as in the
previous discussion.

The degree of adjacency of two regions is maximum (=1) only when they are
physically adjacent i.e., d(p)=0 and their membership values are also equal i.e., Ix(p) =
r(q). If two regions are physically adjacent then their degree of adjacency is
determined only by the difference of their membership values. Similarly, if the
membership values of two regions are equal their degree of adjacency is determined by
their physical distance only.
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Inthefollowingsections,we willbeexplaininghow theaforesaidmeasurescan
be used for image segmentation and edge detection problems.

SEGMENTATION AND OBJECT EXTRACTION

The problem of grey level thresholding plays an important role in image
processing and vision problems. For example, in enhancing contrast in a image we
need to select proper thresholdlevels from itshistogramso that some suitablenon-
linear transformation can highlight a desirable set of pixel intensities compared to
others. Similarly, in image segmentation one needs proper histogram thresholding
whose objective is to establish boundaries in order to partition the image spaces into
meaningful regions. This Section illustrates an algorithm where these various
information measures can be used to make this selection task automatic so that an
optimum threshold (or set of thresholds) may be estimated without the need to refer
directly to the histogram.

Algorithm 1

Given an L level image X of dimension MxN with minimum and maximum

gray vales lmin and lmax respectively,
Step 1: Construct the membership plane using the standard S function (equation

(29)) as

Itrrm = it(t)= S(I; a, b, c)

(called bright image plane if the object regions possess higher gray values)

or Itmn = It(l)= 1-S(I; a, b, c)

(called dark image plane if the object regions possess lower gray values)
with cross-over point b and a bandwidth A b. The S function as given below in
equation (29) is shown graphically in Fig. 2 for an L-level image.

Pmn = Itx(Xmn)= S(xmn; a, b, c)=0, Xmn _<a (29a)

= 2[(Xmn - a)/{c- a)]2,a _ Xmn <b (29b)

= 1-2[(Xmn-C)/(c-a)]2,b<xmn <c (29c)

=1, Xmn>C (29d)

with b = (a+c)/2, b-a = c-b = A b.
The parameter b is the cross-over point, i.e., SCo;a, b ,c) = 0.5. Ab is the
bandwidth.

Step 2: Compute ¥(X),I-ICX), Comp(X) and IOACCX)

Step 3: Vary b between train and tmax and select those b for which I(X)

(where I(X)) denotes one of the aforesaid measures or a combination of them) has
local minima. Among the local minima let the global one have a cross over point s.

The level s, therefore, denotes the cross over point of the fuzzy image plane

Itmn' which has minimum grayness and/or geometrical ambiguity. The Itnm plane
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Step 3: Vary b between train and trnax and select those b for which I(X)

(where I(X)) denotes one of the aforesaid measures or a combination of them) has
local minima. Among the local minima let the global one have a cross over point s.

The level s, therefore, denotes the cross over point of the fuzzy image plane

lXmn,which has minimum grayness and/or geometrical ambiguity. The ttmn plane
1.0 I I I !
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Figure 2 Standard S function for an L-level image.

then can be viewed as a fuzzy segmented version of the image X. For the purpose of
nonfuzzy segmentation, we can take s as the threshold or boundary for classifying or
segmenting image into object and background. (For images having multiple regions,
one would have a set of such optimum _t(X) planes).

The measure I(X) in Step 3 can represent either grayness ambiguity (i.e., y(X)
or H(X)) or geometrical ambiguity (i.e., compOO or IOAC(X) or a(S,3")) or both
(i.e., product of grayness and geometrical ambiguities).

Faster Method of Computation

From the algorithm 1 it appears that one needs to scan an L level image L times
(corresponding to L cross over points of the membership function) for computing the
parameters for detecting its threshold. The time of computation can be reduced
significantly by scanning it only once for computing its co-occurrence matrix, row
histogram and column histogram, and by computing I_(1),1= 1, 2.... L every time
with the membership function of a particular cross over point

The computationsofY(X) (orH(X)),a00,pfX),I(X)andbOO canbemade

fasterinthefollowingway. Leth(i),i=1,2..Lbethenumberofoccurrencesofthe
leveli,c[i,j],i= I,2.. L,j= l,2.. L theco-occurrencematrixand _i),i= I,2..
L themembershipvectorfora fixedcrossoverpointofanL levelimageX.

Determine 7(X), area and perimeter as

2 L

_,(X) = _ Z T(i) h(i)i=l

T(i)= min{tt(i),l- ll(i)}

(30a)

(30b)
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For calculating length and breadth following steps can be used. Compute the
row histogram Rim, 1], m -- 1.... M, ! = !.. L, where Rim, 1] represents the
number of occurrences of the gray level 1 in the mth row of the image. Find the
column histogram C[n, 1], n = 1.. N, 1 = 1.. L, where C[n, 1] represents the
number of occurrences of the gray level 1 in the nth column of the image. Calculate
length and breadth as

L
l(X) = max _ C[n, 1]. Ix(l)

n 1--1 (33)

L
b(X) = max 5". R[m, 1]. IX(I)

m I=1 (34)

Some Remarks

The grayness ambiguity measure e.g., 7(X) or HOO basically sharpens the
histogram of X using its global information only and it detects a single threshold in
its valley region. Therefore, if the histogram does not have a valley, the above
measures will not be able to select a threshold for partitioning the histogram. This

can readily be seen from Equation (30) which shows that the minima of 7(X)

measure will only correspond to those regions of gray level which has minimum
occurrences (i.e., valley region). Comp (X) or IOAC(X), on the other hand, uses
local information to determine the fuzziness in spatial domain of an image. As a
result, these are expected to result better segmentation by detecting thresholds even in
the absence of a valley in the histogram.

Again, comp(X) measure attempts to make a circular approximation of the
object region for its extraction, whereas, the IOAC(X) goes by the rectangular
approximation. Their suitability to an image should therefore be guided by this
criterion.

Choice of Membership Function

In the aforesaid algorithm w = 2Ab is the length of the interval which is shifted
over the entire dynamic range of gray scale. As w decreases, the tt(Xmn) plane would

have more intensified contrast around the cross-over point resulting in decrease of
ambiguity in X. As a result, the possibility of detecting some undesirable thresholds
(spurious minima) increases because of the smaller value of A b. On the other hand,
increase of w results in a higher value of fuzziness and thus leads towards the
possibility of losing some of the weak minima.

The criteria regarding the selection of membership function and the length of
window (i.e., w) have been reported recently by Murthy and Pal [10] assuming
continuous function for both histogram and membership function. For a fuzzy set

"bright image plane", the membership function Ix: [0,w] _ [0,1] should be such
that

i) Ix is continuous, Ix(0) = 0, Ix(w) = 1
ii) Ixis montominaUy non-decreasing, and

iii) it(x) = 1- Ix(w-x) for all x e [0, w] where w>0 is the length of the window.
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Furthermore, g should satisfy the bound criteria derived based on the correlation
measure (equation 7). The main properties on which correlation was formulated are

P l: If for higher values of 111'112takes higher values and for lower values

of !_1, 112also takes lower values then COt1, !12) > 0

P2: If 1111"and !a21" then COt 1, Ix2) > 0

P3: If 1111"and/a2'l" then C(j.t1, 112)< 0

[1" denotes increases and _' denotes decreases].

It is to be mentioned that P2 and P3 should not be considered in isolation of P1.

Had this been the case, one can cite several examples when 111_ and 1121"but C(ILt1,

I.t2)< 0 and IX11" and 112"1"but C_I, I.t2) > 0. Subsequently, the type of

membership functions which should not be considered in fuzzy set theory are
categorized with the help of correlation. Bound functions h1 and h2 are accordingly
derived [11]. They are

hi(x)=0, 0_<x_<_ (35)

=X--E, E-<X_<I

h2(x) = x+ E, 0<X<I--E (36)

=1, I-E_<x<-I

where _ = 0.25. The bounds for membership function I.t are such that

hl(X ) < _t(x) < h2(x ) for x _ [0,1].

For x belonging to any arbitrary interval, the bound functions will be changed

proportionately. For h 1 -< g < h2, C(hl, h 2) > 0 ,C(hl,lt) > 0 and C(h2, bt) > 0.

! / / hI(x)

I . I I

o _1. .1. 3. 1
4 2 4

x

Figure 3 Bound Functions for 11(x).
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The function g lying in between h 1 and h2 does not have most of its variation

concentrated (i) in a very small interval, (ii) towards one of the end points of the
interval under consideration and (iii) towards both the end points of the interval under
consideration.

Figure 3 shows such bound functions. It is to be noted that Zadeh's standard S
function (equation 29) satisfies these bounds.

It has been shown [10] that for detecting a minimum in the valley region of a
histogram, the window length w of the g function should be less that the distance
between two peaks around that valley region.

H r as an Objective Criterion

Let us now explain another way of extracting object by minimizing higher order
fuzzy entropy (equation 5) of both object and background regions. Before explaining
the algorithm, let us describe the membership function and its selection procedure.

Let s be an assumed threshold which partitions the image X into two parts
namely, object and background. Suppose the gray level ranges [1 - s] and {s + 1 - L]
denote, respectively, the object and background of the image X. An inverse r_-type
function as shown by the solid line in the Figure 4 is used here to obtain gmn values

of X. The inverse _-type function is seen (from Fig. 4) to be generated by taking
union of S(x ; (s - (L - s)), s, L) and 1 - S(x; 1, s, (s + s - 1)), where S denotes the
standardS function defined by Zadeh (equation 29).

The resulting function as shown by the solid line, makes la lie in [0.5,1]. Since
the ambiguity (difficulty) in deciding a level as a member of the object or the
background is maximum for the boundary level S, it has been assigned a membership
value of 0.5 (i.e., cross-over poin0. Ambiguity decreases (i.e., degree of
belongingness to either object or background increases) as the gray value moves away

from s on either side. The gmn thus obtained denotes the degree of belongingness of

a pixel Xmn to either object or background.
Since s is not necessarily the mid point of the entire gray scale, the membership

function (solid line if Fig. 4) may not be a symmmetric one. It is further to be noted
that one may use any linear or nonlinear equation (instead of Zadeh's standard S
function) to represent the membership function in Fig. 4. Unlike the Algorithm-l,
the membership function does not need any parameter selection to control the output.

Algorithm 2

Assume a threshold s, 1< s < L and execute the following steps.

Step 1: Apply an inverse n - type function [Fig. 4] to get the fuzzy gmn plane,

with gmn E [0.5, 1]. (The membership function is in general asymmetric).

Step 2: Compute the rth order fuzzy entropy of the object HD and the background
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0.51. ..... !
1

| |

L
i

• $

w
s •

Figure 4 Inverse n function (solid line) for computing object and background
entropy.

H_ considering only the spatially adjacent sequences of pixels present within the

object and background respectively. Use the 'rain' operator to get the membership
value of a sequence of pixels.

Step 3: Compute the total rth order fuzzy entropy of the partitioned image as

r r r

H s = H 0 + H B .

Step 4: Minimize H r with respect to s to get the threshold for object background

classification.

Referring back to the Table 1, we have seen that H2 reflects the homogeneity

among the supports in a set, in a better way than H 1 does. Higher the value of r, the

stronger is the validity of this fact. Thus, considering the problem of object-

background classification, Hr seems to be more sensitive (as r increases) to the

selection of appropriate threshold; i.e., the improper selection of the threshold is

more strongly reflected by Hr than Hr'l For example, the thresholds obtained by H2

measure has more validity than those by H 1 (which only takes into account the

histogram information). Similar arguments hold good for even higher order (r > 2)

entropy.

Example 2

Figures 5 and 6 show the images of Lincoln and blurred chromosome along with
the histogram. Table 3 shows the thresholds obt,ai'ned by comp Of) and IOAC (X)
measures for various window sizes w when Zadeh's S function is used as membership

function. Lincoln image is of 64x64 with 32 gray levels whereas, chromosome
image is of 64x64 with 64 gray levels.
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Figure 5(a) Input.

0 1 31

Figure 5(o) Histogram

Figure 6(a) Input.

h(l)

I

0 1 63

Figure 6(b) Histogram.
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Figure 7(a) Threshold = 10.

Figure 7('o) Threshold = 32. Figure 7(c) Threshold = 56.

Table 3 Various Thresholds (* denotes global minimum)

W
Lincoln

Comp IOAC

8 10 11 * 23
10 10 11 * 23
12 10 11 * 23
16 9 11

W
Chromosome

Comp IOAC

12 33 56 "30"51
16 55 31 "49
20 54 32 * 46
24 52 34

Threshold produced by H2 measure (Algorithm 2) is 8 for Lincoln image. Some

typical nonfuzzy thresholded outputs of these images are shown in Figure 7.
Recently, transitional correlation and within class correlation have been defined [12]
based on equation (7) for image segmentation which takes both local and global
information into account. Automatic selection of an appropriate enhancement

operator is available in [17].

ORIGINAL PAGE IS

OF POOR _ALFi'Y
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EDGINESS MEASURE

Let us now describe an edginess measure [18,19] based on Hl(Ezluation 5) which

denotes an amount of difficulty is deciding whether a pixel can be called an edge or

3 be a 3 x 3 neighborhood of a pixel at (x, y) such that
not. Let Nx,y

3
Nx,y = {(x, y), (x-l,y), (x+l,y), (x,y-1), (x,y+l), (x-l, y-I),

(x-I, y+l), (x+l,y-1), (x+l,y+l)} (37)

E of the pixel (x, y), giving a measure of edginess at (x,The edge-entropy, Hx,y

y) may be computed as follows. For every pixel (x, y), compute the average,

maximum and minimum values of gray levels over Nx,y.3 Let us denote the average,

maximum and minimum values by Avg, Max, Min respectively. Now define the
following parameters.

D = max { Max - Avg, Avg- Min} (38)

B = Avg (39)

A = B - D (40)

CffiB+D (41)

A _-type membership function is then used to compute Ixxy for all (x, y)

3
Nx,y, such that Ix(A) = Ix(C) = 0.5 and ia(B) = 1. It is to be noted that Ixxy > 0.5.

Such a laxy, therefore, gives the degree to which a gray level is close to the average

N 3
value computed over x,y. In other words, it represents a fuzzy set "pixel intensity

N3 values over N3x,yclose to its average value", averaged over x,y. When all pixel

are either equal or close to each other (i.e., they are within the same region), such a

transformation will make all Ixxy = 1 or close to 1. In other words, if there is no
edge, pixel values will be close to each other and the Ix values will be close to

one(l); thus resulting in a low value of H 1. On the other hand, if there is an edge

(dissimilarity in gray values over N3y), then the l.t values will be more away from

unity; thus resulting in a high value of H 1. Therefore, the entropy H 1 over N3x,y

H E
can be viewed as a measure of edginess (x.y) at the point (x, y). The higher the

E
value of Hx,y, the stronger is the edge intensity and the easier is its detection. As

mentioned before, there are several ways in which one can clef'me a n-type function
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0.5

/,. I
,I I X.

0 _.i# I %'_lm

A B C

Figure 8 n function (solid line)for computing edge entropy.

(solid line) as shown in Fig. 8.
The proposed entropic measure is less sensitive to noise because of the use of a

dynamic membership function based on a local neighborhood. The method is also
not sensitive to the direction of edges. Other edginess measures are available in
[13,20].

CONCLUSIONS

Various uncertainty and image information measures, as conveyed by entropy and
fuzzy geometry, have been explained. The problems of object extraction and edge
detection have been considered, as an example, to demonstrate their applications.
Uncertainty in membership evaluation in these problems and its management have
also been explained through bound functions. The measures eomp(X) and IOAC(X)
can also be used for skeleton extraction and medial axis transformation of a gray tone
image [21].
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INTRODUCTION

In this brief paper, 1 we summarize the results of recent research on the conceptual foun-

dations of fuzzy logic [9]. This research resulted in the formulation of several semantic models

that interpret the major concepts and structures of fuzzy logic in terms of the more primitive

notions of resemblance and similarity between "possible worlds," i.e., the possible states, sit-

uations or behaviors of a real-world system. The metric structures representing this notion

of proximity are generalizations of the accessibility relation of modal logics [1].

Possibilistic reasoning methods may be characterized, by means of our interpretation, as

approaches to the description of the relations of proximity that hold between possible system

states that are logically consistent with existing evidence, and other situations, which are

used as reference landmarks. By contrast, probabilistic methods seek to quantify, by means

of measures of set extension, the proportion of the set of possible worlds where a proposition

is true.

Our discussion will focus primarily on the principal characteristics of a model, discussed

in detail in a recent technical note [3], that quantifies resemblance between possible worlds

by means of a similarity function that assigns a number between 0 and 1 to every pair of

possible worlds. Introduction of such a function permits to interpret the major constructs and

methods of fuzzy logic: conditional and unconditional possibility and necessity distributions

and the generalized modus ponens of Zadeh on the basis of related metric relationships

between subsets of possible worlds.

1The present paper is a slightly revised and expanded version of a communication appearing in the

Proceedings of the 1990 Iizuka Conference on Fuzzy Logic and Neural Networks.
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THE APPROXIMATE REASONING PROBLEM

Our semantic model of fuzzy logic is based on two major conceptual structures: the

notion of possible world, which is the basis for our unified view of the approximate reasoning

problem [4], and a metric structure that quantifies similarity between pairs of possible worlds.

If a reasoning problem is thought of as being concerned with the determination of the

truth-value of a set of propositions that describe different aspects of the behavior of a system,

then a possible world is simply a function (called a valuation) that assigns a unique truth

value to every proposition in that set and that, in addition, is consistent with the rules of

propositional logic. The set of all such possible worlds is called the universe of discourse.

In any reasoning problem, knowledge about the characteristics of the class of systems

being studied combined with observations about the particular system under consideration

restricts the extent of possible worlds that must be considered to a subset of the universe of

discourse, called the evidential set, which will be denoted g'.

The purpose of the inferential procedures utilized in any reasoning problem may be

characterized as that of establishing if, for a given proposition ,,T' (the hypothesis), either

8" :, 3g' or _¢ =_ -,,_, i.e., whether existing evidence implies the hypothesis or it implies its

negation. In approximate reasoning problems, as illustrated in Figure 1, such determination

is, by definition, impossible: there are some possible worlds in the the evidential set where

the hypothesis is true and some where it is false.

SIMILARITY FUNCTIONS AND IMPLICATION

In the view of fuzzy logic proposed by our model the purpose of possibilistic methods is

the description of the evidential set by characterization of the resemblance relations that hold

between its elements and elements of other sets used as reference landmarks. By contrast,

probabilistic methods (i.e., probabilities usually interpreted as frequencies or as degree of

personal belief) seek to measure the relative extensions of the sets g' N¢T' and _" gl -_¢T'.

To represent similarity or resemblance between possible worlds we introduce a binary

function S that assigns a value between 0 and 1 to every pair of possible worlds w and w'.

A value of S equal to 1 means that w and w _ are identical, while a value of S equal to 0

234



iiiiiiii !i !i iiiiiiiiii!ili!

HYPOTHESIS TRUE HYPOTHESIS FALSE
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Figure 1: The approximate reasoning problem

indicates that knowledge of propositions that are true in one possible world does not provide

any indication about the nature of the propositions that are true in the other.

In addition to the above requirement of reflexivity, i.e.

S(w,w) = 1,

we will need to impose additional axioms to assure that S captures the semantics of a

similarity relation. In addition to assuming that S is symmetric, i.e.,

s(_, _') = s(_', _),

we will also require that S satisfies a form of transitivity that is motivated by noting that

if w, w' and w" are possible worlds and if w is highly similar to w' and w' is highly similar

to w", then it would be surprising if w and w" were highly dissimilar. This consideration

indicates that knowledge of S(w, w') and S(w', w") should provide a lower bound for values

of S(w, w"), as expressed by the inequality

s(_, _') > s(_, _') ®s(_', _"),

where ® is a binary operator used to represent a real function that produces the required

bound. If reasonable requirements are imposed upon the function ®, it is easy to show
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that it has the properties of triangular norms: a class of functions that play a major role in

multivalued logics [6].

The generalized transitivity property expressed by the above inequality may be easier to

understand as a classical triangular inequality if it is noted that the function _ = 1 - S has

the properties of a metric. When ® is the Lukasiewicz norm

a®b = max(a + b- 1,0)

, then the transitivity property of S is equivalent to the well-known triangular property

_< +

of distance functions. If ® corresponds to the Zadeh triangular norm a ® b = min(a, b), then

5 may be shown to satisfy the more stringent ultrametric inequality

5(x,z) _ max(5(x,y),5(y,z) ).

The correspondence between propositions and subsets of possible worlds simplifies the

interpretation of the classical rule of modus ponens as a rule of derivation based on the

transitive property of set inclusion. If three propositions p, q and r are such that the set of

possible worlds where p is true is a subset of the set of possible worlds where q is true, and if

such set is itself a subset of the set of worlds where r is true, then the modus ponens simply

states that the set of p-worlds is a subset of the set of r-worlds.

The conventional relation of set inclusion, based on the binary truth-value structure of

classical logic, allows only to state that a set of possible worlds is a subset of another or that

it is not. Introduction of a metric structure in the universe of discourse, however, permits

the quantification of the degree by which a set is included into another. Every set of possible

worlds, as illustrated in Figure 2, is a subset of some neighborhood of any other set. The

minimal amount of "stretching" that is required to include a set of possible worlds q in a

neighborhood of a set of possible worlds p, given by the expression

I(p[q) = inf sup S(w,w'),
WtO-q wl-p

is called the degree of implication,
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Figure 2: Degree of implication

The degree of implication function has the important transitive property expressed by

I(p [q) _> I(plr)®I(rlq),

which is the basis of the generalized modus ponens of Zadeh. As illustrated in Figure 3, this

important rule of derivation tells us how much the set of p-worlds should be stretched to

encompass q on the basis of knowledge of the sizes of the neighborhoods of p that includes

r and of r that includes q.

Figure 3: The generalized modus ponens

A notion dual to the degree of implication is that of degree o[ consistence, which quantifies

the amount by which a set must be stretched to intersect another, and that is given by the

expression

C(plq) = sup sup S(w, w').
wq-q wl-p
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POSSIBILISTIC DISTRIBUTIONS

Although the transitive property of the degree of implication essentially provides the

bases for the conceptual validity of the generalized modus ponens, this rule of derivation is

typically expressed by means of necessity and possibility distributions.

An unconditioned necessity distribution given the evidence _" is any function defined

over propositions that bounds by below the degree of implication function, i.e., any function

satisfying the inequality

Nee(p) < I(p [_').

Correspondingly, an unconditioned possibility distribution is any upper bound for the

degree of consistence function, i.e.,

Poss(p) _> C(p [_').

The definition of conditional possibility and necessity distributions makes use of a form

of inverse of the triangular norm denoted ® and defined by the expression

aQb=sup(c: b®c<a}.

Using this function, it is possible to define conditional possibilistic distributions as follows:

Definition: A function Nee(.[.) is called a conditional necessity distribution for 8" if

Nec(qlp) < inf [I(ql w) ®I(p]w)].,
wI-F

Definition: A function Poss(.[-) is called a conditional possibility distribution for F if

Poss(q[p) >__sup [I(qlw) QI(p[w)].
wl-¥

GENERALIZED MODUS PONENS

The compositional rule of inference or generalized modus ponens of of Zadeh is a gener-

alization of the corresponding classical rule of inference that may be used even when known

facts do not match the antecedent of a conditional rule. The interpretation provided by

our model explains the generalized modus ponens as an extrapolation procedure that uses
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knowledge of the similarity between the evidence and a set of possible worlds p (the an-

tecedent proposition), and of the proximity of p-worlds to q-worlds, to bound the similarity

the latter to the evidential set. The actual statement of the generalized modus ponens for

necessity and possibility distributions in terms of similarity structures makes use of a family

of satisfiable propositions that partitions the universe of discourse:

Theorem (Generalized Modus Ponens for Possibility Distributions): Let ._ be a partition

and let q be a proposition. If Poss(p) and Poss(qlp ) are real values, defined for every

proposition p in ._, such that

Poss(p) >__C(p l _¢),

then the following inequality is valid:

Poss(qlp) > sup [I(q
wl-f¢

w)®I(plw)],

sup [Poss(qlp)®Poss(p) ] > C(q F).

Theorem (Generalized Modus Ponens for Necessity Distributions): Let .9" be a partition

and let q be a proposition. If Nee(p) and Nee(qlp) are real values, defined for every

proposition p in ._, such that

Nec(p) < I(pl 8"),

then the following inequality is valid:

Nee(qlp) > inf [I(qlw)®I(plw)],
wI-F

sup [Nee(qlp ) ® Nec(p)] _< I(qlF ) .

VARIABLES AND FUZZY RULES

If our attention is restricted to propositions of the form "X = x," describing the value of a

variable X, and to logical combinations of these propositions, then a possibility distribution

IIyI X may be regarded, as is well known, as an elastic constraint that restricts the values of

a variable Y on the basis of general background information (the evidence F) and knowledge

about possible values of another variable X.

In our similarity-based interpretation, this notion of elastic constraint is easier to under-

stand (Figure 4) by means of the concept of compatibility relation that associates specific
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:::::::::::::::::::::::::::::::: .._..'.

===================================. :::_.._

Figure 4: Compatibility Relation.

values of one variable (X) with possible values of another (Y). Using this basic notion, we

may now describe two major interpretations of fuzzy rules as its similarity-based approxi-

mations by means of fuzzy-set theoretic structures.

The first interpretation, originally proposed by Zadeh [8] and further developed by Trillas

and Valverde [6], is the formal translation of the statement

If #A is a possibility for X, then gB is a possibility distribution for Y.

Using our structures we may define this particular formulation by saying that

Poss(ylx) - us(y) o _tA(X)> I(y Iw) QI(z Iw),

for every world w k- _', i.e., that Poss(.I. ) is a conditional possibility distribution. This

distribution expresses a basic relationship between the similarity between possible evidential

worlds and the core of #B as a "fraction" of their similarity with the core of/zA.

Under this interpretation, the fuzzy-rule based approximation to a compatibihty relation

may be depicted as done in Figure 5, where it has been assumed that the underlying metric

240



(i.e., dissimilarity) is proportional to the euclidean distance in the plane. As illustrated in

that figure, the core of the corresponding conditional possibility distribution is an (upper)

approximant of a classical compatibility relation (which fans outward from the Cartesian

product of the cores of A and B). Whenever several such rules are available, then each one

of these rules will lead to a separate possibility distribution, which may be illustrated, as

done in 7, as an approximating fuzzy relation. Combination of these estimates by intersection

results in a sharper "integrated" estimate of the effect of a rule set,

y corefB)

core(A)

X

Figure 5: Rules as Possibilistic Approximants of a Compatibility Relation.

The second interpretation, originally propoded by Zadeh [7], was first applied by Ma.m-

dani and Assilian [2] to design fuzzy controllers, being also the basis for a wide variety of

recent industrial products [5]. In this formulation, a number of statements of the form

IfXis Ak, then Yis Bk, k = 1, 2, ..., n,

are interpreted as a combined "disjunctive" description of the compatibility relation, rather
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Figure 6: Rule-Sets as Possibilistic Approximants of a Compatibility Relation

than as a set of independently valid rules, as shown in Figure 6. In this case, each disjunctive

approximant, corresponding to a fuzzy relation such as that illustrated in Figure 8 (with the

relation "slopping" away from the cartesian products of the core of the fuzzy sets) is combined

disjunctively by fuzzy set union with the other approximants.

CONCLUSION

Models based on the logical notion of possible-world provide interpretations of the ma-

jor concepts and structures of fuzzy logic in terms of primitive notions of similarity and

resemblance. These interpretations clearly show the basic nature of the difference between

possibilistic, which are based on metrics, and probabilistic methods, which are based on set

measures.
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Figure 7: A Possibilistic Conjunctive Conditional Rule

243



/-

Figure 8: A Component of a Disjunctive Rule Set
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MOTIVATION

• Provide basic characterization of

concepts

Possibilistic

oPossibility and Necessity Distributions

° Possibistic Calculus

o Inferential Rules (GMP)

• Determine analogies and differences with

Probabilistic Reasoning Methods

oUnified Approach to Interpretation

o Needs for specific formalisms/theoretical
structures

I FUZZY LOGIC MAY BE FORMALLY EXPLAINED ]I

BY METRIC CONCEPTS AND STRUCTURES: I

Enrique H. Rusplni
Artificial Intelligence Center
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POSSIBLE WORLDS

• Possible States, Behaviors, Traiectories of a
Conceptual System that is being reasoned about

Examples: Weather System, Vehicle Control
System, Portfolio Status

• Formally equivalent to a ..Valuation:

• Assignment of truth-values (i.e., T, F ) to all
relevant propositions about the state of system

• Consistent with rules of logic

• Universe -- Set of all Possible Worlds

W

p q -_r s _t

III I I I I I

Enrique H. Ruspini
Artificial Intelligence Center
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THE APPROXIMATE REASONING
 BO LEM

• Conventional deductive methods fail to
unambiguously determine the truth-value of a
proposition of interest (h_y.pothesis).

Worlds consistent with the evidence (_')

Worlds logically inconsistent with the evidence

HYPOTHESIS TRUE HYPOTHESIS FALSE

Enrique H. Ruspini
Artificial Intelligence Center
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APPR XIMA E REAS NING METHODS

• Describe properties of the Evidential Set _'

Probabilistic Reasonina :

• Based on the use of additive set measures

• Concerned with (objective or subjective)
proportions of occurrence of certain events,
e.g.,

_(H I_) ÷ _(-_H I_)

Possibilistic Reasonina:

• Based on metric notions (distance, similarity,
proximity)

• Uses measures of resemblance between
subsets of possible worlds

• Oriented toward characterization of conceptual
flexibility, typicality, proximity, degree of fitness

Enrique H. Ruspini
Artificial Intelligence Center
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Semantic Formulation of
Modal Logic

• Basic Elements:

• U : A set of possible worlds (the iv._)

• V: a valuation (mapping pairs of possible
worlds and propositions into truth values),
e.g.,

(w, "it rains") -> T

• R: A binary relation (between pairs of
possible worlds) called the conceivability,
reachability, or accessibility relation

• POSSIBILITY AND NECESSITY :

• p is possible.in w ( w I-.]-[P )
if and only =fp =strue m some world w'
that is related to w

• p is necessary in w ( w !- Np )
if and only if p is true in every world w'
that is related to w

• Different properties of R lead to different
modal systems (T, $4, $5)

Enrique H. Ruspini
Artificial Intelligence Center
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INTERPRETING ACCESSIBILITIES

U .R(w)

,R=UxU : Conventional notion of logical necessity

O = {a propositional subset} (the "observables")

R(w,w') if w and w' share the same "observations"
( Necessity then models rational knowledge)

• Inevitability: Two worlds are related if they are
identical up to some point in time

• Coqnitive capability

° Moral Necessity

• Linguistic Modalities

WE ARE INTERESTED IN MODELING THE ABILITY
OF POSSIBLE WORLDS TO EXEMPLIFY CERTAIN

CONDITIONS

Enrique H. Ruspini
Artificial Intelligence Center
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MULTIPLE ACCESSIBILITY RELATIONS

• Generalize notion of accessibility relation by
consideration of a family of relations indexed by a
numerical parameter between 0 and 1

• Modelinq Objective:

Define resemblance between situations so as to

allow a form of analogical reasoning

Example: Investment advice for S
(Wealth=$1,000,O00) is valid (to some extent) for
S' (Wealth=S999,999)

We want to be able to describe behavioral rules
that are valid in neicjhborhoods of sets of

possible worlds

U

0,0

•W

• Defined by means of a similarity function

Enrlque H. Ruspini
Artificial Intelligence Center
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SIMILARITY FUNCTIONS

• Assigns a similarity value to pairs of possible
worlds

S: W × W --> [0,1]

• S(w,w')=l means that w is identical to w'

• S(w,w')=0 means that w and w' are completely
dissimilar

• Properties of Similarity Relations:

• S(w,w') =1 if and only if w=w' (Reflexivity)

• S(w,w') = S(w',w) (Symmetry)

• S(w,w") _>S(w,w') ® S(w',w")

• Imposition of reasonable requirements indicates
that ® should have the properties of a continuous
trianqular norm (T-norm).

• 8- ] - S, is a distance function.

I IIII 11111111 I I

Enrique H. Ruspini
Artificial Intelligence Center
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LOGIC and

• Metric structures allow to characterize

implications between propositions (i.e., subset
inclusions) in terms of similarities between
subset elements:

• If B _DA, then every point of A has one point
of B (i.e., itself) that is similar to it to the
degree I

• In general, every point of a subset A is
similar to some degree to a point of B (i.e.,
falls in some neighborhood of B)

Enrique H. Ruspini
Artificial Intelligence Center
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MODELS (Good, Bad, and otherwise)

• MODELS (MODAL LOGIC) :

• q is a model of p (qii=P).e.q-world is a p-world,
if and only if every

q_P

• GENERALIZED MODELS :

• q is a necessary model of p to the degree
and only if every q-world is <x-similar to a
p-world, i.e.

q => l-la p

(X if

("De Re" Interpretation)

• To what degree q is a necessarv model or a
good example of p? ( "Degree of Implication" )

I(Plq)= inf sup S(w,w')
wl-q W'l-p

r I I

Enrique H. Rusplni
Artificial Intelligence Center
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DEGREE OF IMPLICATION

• I(plq) measures the extent by which an_g.£q-world
resembles some p-world

• Degree by which was is true in one set must apply on
another

• Properties of I(plq):

• If p => r, then I(Plq) -<I(rlq),

• If q => r, then I(plq) ->I(plr),

• I(plq) >_l(plr)®l(rlq),

• I(plq) =sup[l(plr)®l(rlq)]

• Basis for cleneralized modus ponens

P
r

q

Enrique H. Ruspini
Artificial Intelligence Center
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DEGREE OF CONSISTENCE

C(plq)=suP sup S(w,w')
wl-q w'l-p

• "Dual" of the degree of implication function

• Measures extent by which true propositions in one set
apply on another

I I I I II IIIIII IIIII
i n i ill

Enrique H. Ruspini
Artificial Intelligence Center
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UNCONDITIONED, POSSIBILITY DISTRIBUTIONS

• Upper bounds of C(Pl_

C(pl_ -- Poss(p)

UNCONDITIONED NECESSITY DISTRIBUTIONS

• Lower bounds of I(Pl_)

Nec(p) _<I(pl_

Nec(p) _<I(pl_ -<C(pl_ -<Poss(p)

Enrique H. Ruspini
Artificial Intelligence Center
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II

Inverse of a T-Norm

aOb = sup{c: b ® c _ a}

a®b
I I I I

max(a +b- 1,0)

ab

min(a,b)

min(l+ a- b,1)

a/b, if b>a,

1, Otherwise

a, if b > a,

1, otherwise

III II

Enrique H. Ruspini
Artificial intelligence Center
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Conditional Distributions

• Conditional Necessity

Nec(qlp) <_.inf [l(qlw)Ol(plw)]
wl-_"

• Conditional Possibility

Poss(qlp) >_su_ [l(qlw)O I(plw)]

The conditional distributions measure the extent by
which similarity to the consequent

must or m__ (respectively) exceed

the similarity to the antecedent

Enrique H. Ruspini
Artificial Intelligence Center

261



m I I111111 I I I IIIII • II IIII III

Generalized Modus Ponens

s_p [Nec(ql P)® Nec(p) ]_<I(ql _')

sup [Poss(qlp) ® Poss(p)] _ C(ql_')
.9"

q
V

P

U

III I I
i

Enrique H. Ruspini
Artificial Intelligence Center
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POSSIBLE WORLDS and VARIABLES

• Possible Worlds will be characterized by means of

a number of variables X, Y, ...

• Each variable X takes values in a well-defined

domain ._( X ), e.g.,

.,_(Color) = { Green, Red, Blue, ...}

• Possible worlds correspond to a complete

specification of variable values

• Partial specification of variable values defines a

subset of possible worlds

• The propositions of interest are those of the form:

"X is x," "Y is y," .....

and their logical combinations (conjunctions,

disjunctions, ... )

• [X=x] denotes the subset of all worlds where X=x

Enrique H. Ruspini
Artificial Intelligence Center
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I I

Compatibility Relations

• Define relationship between values of two
system variables (in the "actual" world)

• Permits the derivation of possible values of Y
from knowledge of possible values of X

• Constrain the extent of the evidential set

Projected

• evidence in Y _ii!!ii!!i::i!::_

Y

Evidence In X

X

1:-+:.- ........ > ":':"" ":'-";':'-"-":" "-"::'-5i;:

v

I ] I IIIIIIII III I

Enrique H. Ruspini
Artificial Intelligence Center
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CONDITIONAL POSSIBILITIES from FUZZY RULES

• If X is A, then Y is B

° Interpretation:

° If _' is such that

then
Poss(xl_')=/_A(X) >_C(XI_')•

/Ja(y) >--C(YI_')•

• The function ]-[(ylx) defined by

]-[(ylx) = PB(Y) 0 pA(x),

is a conditional possibility for y given x

f

Enrique H. Ruspini
Artificial Inte!ligence Center
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Logical Interpretation of a Conditional Rule

(Zadeh-Trillas-Valverde)

• The conditional possibility is an "enclosing"
approximation of the compatibility relation

y core(B)

I I

core(A)

X

I I I III I
, i , ,=m i

Enrique H. Ruspini
Artificial Intelligence Center
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Z'IV Interpretations as Fuzzy RelationF

Enrique H. Ruspini
Artificial Intelligence Center

26?



I I I I I II II IIIII I

Disjunctive Interpretations
,of Conditional Possibility Relations

(Zadeh-Mamdani-Assilian)

• "If X is A, then Y is B" is interpreted as one of a set
of regions that must be combined (by disjunction)
to approximate the compatibility relation

• Relation is characterized as a "set of points" rather
than as the intersection of constrainning regions

Y

=,,,._
v

X

] I I I I I I_ IIIIII II I I

Enrlque H. Ruspini
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ZMA Disjunctive Approximants
as Fuzzy Relations

f ":::: :.,..... /

Enrique H. Ruspini
Artificial Intelligence Center
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Autonomous Robotics Rese.arch
at the Artificial Intelligence Cente£

• FLAKEY

• Successor of the pioneer autonomous robot
SHAKEY

• Technological Emphasis:

• Autonomous Navigation

• Autonomous Planning/Replanning

• Multiple Intercommunicating Agents

• Explicit Representation of Knowledge states

• Integration of Sensing Activities into Plans

• Learning

• zz Lo ic N r I Ne w rk Inve i a i n :

• Rule-based "blending" of Local Behaviors

• Flexible Navigation

• Flexible Planning/Replanning

• NN-Based Learning

i I I II ]1 I
i

Enrique H. Ruspini

Artificial Intelligence Center
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Identification, Estimation and Control of Dynamical Systems

with the Parametric Avalanche Neural Network

(Paper not provided by publication date.)
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